WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

Overview

HeadPoseEstimation-WHENet-yolov4-onnx-openvino

ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

ezgif com-gif-maker (3)

1. Usage

$ git clone https://github.com/PINTO0309/HeadPoseEstimation-WHENet-yolov4-onnx-openvino
$ cd HeadPoseEstimation-WHENet-yolov4-onnx-openvino
$ wget https://github.com/PINTO0309/HeadPoseEstimation-WHENet-yolov4-onnx-openvino/releases/download/v1.0.0/saved_model_224x224.tar.gz
$ tar -zxvf saved_model_224x224.tar.gz && rm saved_model_224x224.tar.gz

$ python3 demo_video.py
usage: demo_video.py \
[-h] \
[--whenet_mode {onnx,openvino}] \
[--device DEVICE] \
[--height_width HEIGHT_WIDTH]

optional arguments:
  -h, --help
      show this help message and exit
  --whenet_mode {onnx,openvino}
      Choose whether to infer WHENet with ONNX or OpenVINO. Default: onnx
  --device DEVICE
      Path of the mp4 file or device number of the USB camera. Default: 0
  --height_width HEIGHT_WIDTH
      {H}x{W} Default: 480x640

2. Reference

  1. https://github.com/Ascend-Research/HeadPoseEstimation-WHENet
  2. https://github.com/AlexeyAB/darknet
  3. https://github.com/linghu8812/tensorrt_inference
  4. https://github.com/jkjung-avt/yolov4_crowdhuman
  5. https://github.com/PINTO0309/PINTO_model_zoo
  6. https://github.com/PINTO0309/openvino2tensorflow
  7. https://zenn.dev/pinto0309/scraps/1849b6909db13b
You might also like...
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

 WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

Export CenterPoint PonintPillars ONNX Model For TensorRT
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Human Pose Detection on EdgeTPU
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

Comments
  • yaw will output nan or inf after some infers with trt model

    yaw will output nan or inf after some infers with trt model

    Hello ,Sir,

    I have tested, the input of network has no problem. With one single image, this trt model infers with different results of yaw angle on different batches, while the roll and pitch keep the same. When this model infers on webcam, the first almost ten batches are fully ok, but after that, the yaw results turn out inf or nan, while the roll and pitch also are ok.

    This question might be somewhat too specific, I would appreciate a lot if you can give me some hints about this.

    Thank you!

    opened by thunder95 2
  • invalid dimensions

    invalid dimensions

    I tried to transform keras model to onnx, and this is my code,

    onnx_model = keras2onnx.convert_keras(self.model, self.model.name)
    temp_model_file = './mymodel.onnx'
    onnx.save_model(onnx_model, temp_model_file)
    

    However, when I tried to run my onnx model, I got a crash and error code is like this,

    onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Got invalid dimensions for input: input_1 for the following indices
     index: 1 Got: 3 Expected: 224
     index: 3 Got: 224 Expected: 3
     Please fix either the inputs or the model.
    

    I also noticed your onnx model runs successfully, coud you please tell me how do you solve this problem?

    opened by liyewu 2
Releases(v1.0.4)
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice.

Ultralytics 34.1k Dec 31, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 7, 2023
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

null 7.7k Jan 6, 2023
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

null 7.7k Jan 3, 2023
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

null 4.2k Jan 1, 2023
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

null 1 Dec 23, 2021
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 9, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 4, 2023