Dataloader for CIFAR-N
CIFAR-10N
noise_label = torch.load('./data/CIFAR-10_human.pt')
clean_label = noise_label['clean_label']
worst_label = noise_label['worse_label']
aggre_label = noise_label['aggre_label']
random_label1 = noise_label['random_label1']
random_label2 = noise_label['random_label2']
random_label3 = noise_label['random_label3']
CIFAR-100N
noise_label = torch.load('./data/CIFAR-100_human.pt')
clean_label = noise_label['clean_label']
noisy_label = noise_label['noisy_label']
Training on CIFAR-N with the Cross-Entropy loss
CIFAR-10N
# NOISE_TYPE: [clean, aggre, worst, rand1, rand2, rand3]
# Use human annotations
CUDA_VISIBLE_DEVICES=0 python3 main.py --dataset cifar10 --noise_type NOISE_TYPE --is_human
# Use the synthetic noise that has the same noise transition matrix as human annotations
CUDA_VISIBLE_DEVICES=0 python3 main.py --dataset cifar10 --noise_type NOISE_TYPE
CIFAR-100N
# NOISE_TYPE: [clean100, noisy100]
# Use human annotations
CUDA_VISIBLE_DEVICES=0 python3 main.py --dataset cifar100 --noise_type NOISE_TYPE --is_human
# Use the synthetic noise that has the same noise transition matrix as human annotations
CUDA_VISIBLE_DEVICES=0 python3 main.py --dataset cifar100 --noise_type NOISE_TYPE
Additional dataset information
We include additional side information during the noisy-label collection in side_info_cifar10N.csv
and side_info_cifar100N.csv
. A brief introduction of these two files:
- Image-batch: a subset of indexes of the CIFAR training images.
- Worker-id: the encrypted worker id on Amazon Mechanical Turk.
- Work-time-in-seconds: the time (in seconds) a worker spent on annotating the corresponding image batch.