noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

Overview

ProSelfLC: CVPR 2021

ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks

For any specific discussion or potential future collaboration, please feel free to contact me.

Paper link: https://arxiv.org/abs/2005.03788

Cite our work if you find it useful

@inproceddings{wang2021proselflc,
  title={ {ProSelfLC}: Progressive Self Label Correction
  for Training Robust Deep Neural Networks},
  author={Wang, Xinshao and Hua, Yang and Kodirov, Elyor and Clifton, David A and Robertson, Neil M},
  booktitle={CVPR},
  year={2021}
}

Link to Slide, Poster, Final version

Link to reviewers' comments

List of Content

  1. Storyline
  2. Open ML Research Questions
  3. Noticeable Findings
  4. Literature Review
  5. In Self LC, a core question is not well answered
  6. Underlying Principle of ProSelfLC
  7. Mathematical Details of ProSelfLC
  8. Design Reasons of ProSelfLC
  9. Related Interesting Work
You might also like...
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

 Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

Comments
  • Full code for reproducing the resutls

    Full code for reproducing the resutls

    Thanks for your excellent work. May I ask whether the full code will be released for reproducing the results and developing new methods based on your work?

    Regards

    Lei

    opened by LeiBAI 4
  • tabular data/ noisy instances

    tabular data/ noisy instances

    Hi, thanks for sharing your implementation. I have two questions about it:

    1. Does it also work on tabular data?
    2. Is it possible to identify the noisy instances (return the noisy IDs or the clean set)?

    Thanks!

    opened by nazaretl 1
  • Further research: Not All Knowledge Is Created Equal https://arxiv.org/abs/2106.01489

    Further research: Not All Knowledge Is Created Equal https://arxiv.org/abs/2106.01489

    Not All Knowledge Is Created Equal Ziyun Li, Xinshao Wang, Haojin Yang, Di Hu, Neil M. Robertson, David A. Clifton, Christoph Meinel

    arXiv: https://arxiv.org/abs/2106.01489

    Mutual knowledge distillation (MKD) improves a model by distilling knowledge from another model. However, not all knowledge is certain and correct, especially under adverse conditions. For example, label noise usually leads to less reliable models due to the undesired memorisation [1, 2]. Wrong knowledge misleads the learning rather than helps. This problem can be handled by two aspects: (i) improving the reliability of a model where the knowledge is from (i.e., knowledge source's reliability); (ii) selecting reliable knowledge for distillation. In the literature, making a model more reliable is widely studied while selective MKD receives little attention. Therefore, we focus on studying selective MKD and highlight its importance in this work.

    Concretely, a generic MKD framework, Confident knowledge selection followed by Mutual Distillation (CMD), is designed. The key component of CMD is a generic knowledge selection formulation, making the selection threshold either static (CMD-S) or progressive (CMD-P). Additionally, CMD covers two special cases: zero knowledge and all knowledge, leading to a unified MKD framework. We empirically find CMD-P performs better than CMD-S. The main reason is that a model's knowledge upgrades and becomes confident as the training progresses.

    Extensive experiments are present to demonstrate the effectiveness of CMD and thoroughly justify the design of CMD. For example, CMD-P obtains new state-of-the-art results in robustness against label noise.

    opened by XinshaoAmosWang 0
Releases(v2.0.0)
Owner
amos_xwang
Deep Metric Learning, Robust Deep Learning, Semisupervised Learning, Label Noise, Sample Imbalance...
amos_xwang
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 9, 2023
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

null 11 Nov 23, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 3, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 1, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 9, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

null 13 Dec 22, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group -  email: czhu@bupt.edu.cn 22 Dec 23, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

null 10 Sep 12, 2022