Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

Overview

The Lottery Ticket Hypothesis for Pre-trained BERT Networks

License: MIT

Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS 2020]

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin.

Our implementation is based on Huggingface repo. Details are referred to README here. Pre-trained subnetworks are coming soon.

Overview

The Existence of Matching Subnetworks in BERT

Transfer Learning for BERT Winning Tickets

Method

Reproduce Details

Prerequisites and Installation

Details are referred to README here.

Iterative Magnitude Pruning (IMP)

MLM task:

python -u LT_pretrain.py 
	   --output_dir LT_pretrain_model
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --train_data_file pretrain_data/en.train 
	   --do_train 
	   --eval_data_file pretrain_data/en.valid 
	   --do_eval 
	   --per_gpu_train_batch_size 16 
	   --per_gpu_eval_batch_size 16 
	   --evaluate_during_training 
	   --num_train_epochs 1 
	   --logging_steps 10000 
	   --save_steps 10000 
	   --mlm 
	   --overwrite_output_dir 
	   --seed 57

Glue task:

python -u LT_glue.py
	   --output_dir tmp/mnli 
	   --logging_steps 36813 
	   --task_name MNLI 
	   --data_dir glue_data/MNLI 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --do_train 
	   --do_eval 
	   --do_lower_case 
	   --max_seq_length 128 
	   --per_gpu_train_batch_size 32 
	   --learning_rate 2e-5 
	   --num_train_epochs 30 
	   --overwrite_output_dir 
	   --evaluate_during_training 
	   --save_steps 36813
	   --eval_all_checkpoints 
	   --seed 57

SQuAD task:

python -u squad_trans.py 
	   --output_dir tmp/530/squad 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
       --do_train 
       --do_eval 
       --do_lower_case 
       --train_file SQuAD/train-v1.1.json 
       --predict_file SQuAD/dev-v1.1.json 
       --per_gpu_train_batch_size 16 
       --learning_rate 3e-5 
       --num_train_epochs 40 
       --max_seq_length 384 
       --doc_stride 128 
       --evaluate_during_training 
       --eval_all_checkpoints 
       --overwrite_output_dir 
       --logging_steps 22000 
       --save_steps 22000 
       --seed 57

One-shot Magnitude Pruning (OMP)

python oneshot.py --weight [pre or rand] --model [glue or squad or pretrain] --rate 0.5

Fine-tuning

MLM task:

python -u pretrain_trans.py 
	   --dir pre\  [using random weight or official pretrain weight]
	   --weight_pertub tmp/shuffle_weight.pt\ [weight for Bert (not required)]
	   --mask_dir tmp/dif_mask/pretrain_mask.pt \ [mask file]
	   --output_dir tmp/530/pre 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --train_data_file pretrain_data/en.train 
	   --do_train --eval_data_file pretrain_data/en.valid 
	   --do_eval 
	   --per_gpu_train_batch_size 8 
	   --per_gpu_eval_batch_size 8 
	   --evaluate_during_training 
	   --num_train_epochs 1 
	   --logging_steps 2000 
	   --save_steps 0 
	   --max_steps 20000  
	   --mlm 
	   --overwrite_output_dir 
	   --seed 57

Glue task:

python -u glue_trans.py 
       --dir pre \  [using random weight or official pretrain weight]
       --weight_pertub tmp/shuffle_weight.pt \ [weight for Bert (not required)]
       --mask_dir tmp/dif_mask/mnli_mask.pt \ [mask file]
       --output_dir tmp/530/mnli 
       --logging_steps 12271 
       --task_name MNLI 
       --data_dir glue_data/MNLI 
       --model_type bert 
       --model_name_or_path bert-base-uncased 
       --do_train 
       --do_eval 
       --do_lower_case 
       --max_seq_length 128 
       --per_gpu_train_batch_size 32 
       --learning_rate 2e-5 
       --num_train_epochs 3 
       --overwrite_output_dir 
       --evaluate_during_training 
       --save_steps 0 
       --eval_all_checkpoints 
       --seed 5

SQuAD task:

python -u squad_trans.py 
	   --dir pre \  [using random weight or official pretrain weight]
	   --weight_pertub tmp/shuffle_weight.pt \ [weight for Bert (not required)]
	   --mask_dir tmp/dif_mask/squad_mask.pt \ [mask file]
	   --output_dir tmp/530/squad 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --do_train 
	   --do_eval 
	   --do_lower_case 
	   --train_file SQuAD/train-v1.1.json 
	   --predict_file SQuAD/dev-v1.1.json 
	   --per_gpu_train_batch_size 16 
	   --learning_rate 3e-5 
	   --num_train_epochs 4 
	   --max_seq_length 384 
	   --doc_stride 128 
	   --evaluate_during_training 
	   --eval_all_checkpoints 
	   --overwrite_output_dir 
	   --logging_steps 5500 
	   --save_steps 0 
	   --seed 57

Subnetwork with Ramdomly Suffuled Pre-trined Weight

python pertub_weight.py

Citation

If you use this code for your research, please cite our paper:

@misc{chen2020lottery,
    title={The Lottery Ticket Hypothesis for Pre-trained BERT Networks},
    author={Tianlong Chen and Jonathan Frankle and Shiyu Chang and Sijia Liu and Yang Zhang and Zhangyang Wang and Michael Carbin},
    year={2020},
    eprint={2007.12223},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowlegement

We would like to express our deepest gratitude to the MIT-IBM Watson AI Lab. In particular, we would like to thank John Cohn for his generous help in providing us with the computing resources necessary to conduct this research.

Comments
  • RuntimeError: CUDA out of memory

    RuntimeError: CUDA out of memory

    Hello,

    I have extracted the GraSP algorithm from here: https://github.com/VITA-Group/BERT-Tickets/blob/master/transformers-master/examples/GraSP.py

    I am getting CUDA out of memory on whatever size my architecture have. I have migrated your version of transformers to the new one.

    Here is my trainer.py script: https://gist.github.com/gaceladri/f301f33779785c401c8c1e549bcc1144

    I have just adapted your pretrain_grasp.py to the trainer.py script on Transformers 3.3.1

    The error comes at the backward pass in the (2) iteration: https://github.com/VITA-Group/BERT-Tickets/blob/c55e3d9ed21c4a66a58de0f3d1a0d64ca7f73653/pretrain_grasp.py#L729

    Could it be that we are doing the backward pass with the main model loaded and we are duplicating the weights?

    Thanks

    opened by gaceladri 3
  • Duplicated code ¿?

    Duplicated code ¿?

    Hello,

    Thanks for this repo. I am trying to extract the GraSP code from: https://github.com/VITA-Group/BERT-Tickets/blob/master/pretrain_grasp.py

    But in https://github.com/VITA-Group/BERT-Tickets/blob/master/pretrain_grasp.py#L431 there is no import or definition of this function inside the .py. I mean, I have not tried to run the file but if it is not declared or imported from anywhere I imagine that it is not going to work.

    Here you have commented the imports. Should I uncomment this line to import the pruning_model_custom, see_weight_rate, and pruning_model?

    Is for this reason that I don't like to do absolute imports with * because you use to loose the trace. :(

    Big anticipated thanks. Best regards

    opened by gaceladri 1
  • Rewinding doesn't work

    Rewinding doesn't work

    I'm afraid that the rewinding doesn't work, because the code uses an assignment other than torch.clone function. It means the original weights is lost and would be optimised when training.

    opened by little-pikachu 0
  • Question on the custom pruning function

    Question on the custom pruning function

    Hi, Thanks for sharing your codebase. I wonder what exactly is doing the following part of your code as "pruning_model_custom". https://github.com/VITA-Group/BERT-Tickets/blob/4d8e0356939e7045e2f5ee908412a5026051d162/squad_trans.py#L914 Thanks for your help Farhad

    opened by nooralahzadeh 0
  • [Question] the learning rate scheduler may not reach zero, right?

    [Question] the learning rate scheduler may not reach zero, right?

    The implementation doesn't seem to follow the description in the paper:

    Learning rate decays linearly from initial value to zero

    When running the LT_glue.py command shown in README, the script sets --num_train_epochs as 30 and it means training each pruned subnetwork takes 3 epochs (and the [0%, 10%, ...90%]-pruned subnets take 30 epochs in total). However, the learning rate scheduler depends on the --num_train_epochs (30) rather than 3:

    t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
    ...
    scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
    

    So, the last learning rate after 3 epochs is 1.8e-5 (= 2e-5 * (1 - 3/30)) (rather than zero) if we start from 2e-5. Is my understanding correct?

    Sure this minor difference doesn't hurt the great contributions of the work. I just wanna confirm it and know the detail for reproduction and my own further research. Thanks!

    opened by soskek 1
  • Transformer Vesion

    Transformer Vesion

    May I know the transformer library version that was used for this work? I couldn't find it in the project readme file and the latest version raises many errors. Thanks.

    opened by avipartho 0
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 5, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match the latter’s accuracies.

VITA 20 Sep 4, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python >= 3.7.4 Pytorch >= 1.6.1 Torchvision >= 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 8, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

null 75 Dec 16, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

null 124 Dec 27, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 2, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 4, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 7, 2023