Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Related tags

Deep Learning PSD
Overview

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

This is the implementation of PSD (ICCV 2021), a simple weakly-supervised semantic segmentation of large-scale 3D point clouds.

(1) Setup

This code has been tested with Python 3.5, Tensorflow 1.13, CUDA 9.0 and cuDNN 7.4.1 on Ubuntu 16.04.

  • Clone the repository
git clone --depth=1 https://github.com/Yachao-Zhang/PSD && cd PSD
  • Setup python environment
pip install -r helper_requirements.txt
sh compile_op.sh

(2) Weakly semantic Segmentation on S3DIS

S3DIS dataset can be found here. Download the files named "Stanford3dDataset_v1.2_Aligned_Version.zip". Uncompress the folder and move it to /data/S3DIS.

  • Preparing the dataset:
python utils/data_prepare_s3dis.py

Training and test of weakly semantic Segmentation on S3DIS Area-5 by:

sh jobs_s3dis_a5.sh 

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{zhang2021perturbed,
    title={Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation},
    author={Zhang, Yachao and Qu, Yanyun and Xie, Yuan and Li, Zonghao and Zheng, Shanshan and Li, Cuihua},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages={15520--15528},
    year={2021}
}

A related work (Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud AAAI-2021) can be found here.

@inproceedings{zhang2021weakly,
    title={Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud},
    author={Zhang, Yachao and Li, Zonghao and Xie, Yuan and Qu, Yanyun and Li, Cuihua and Mei, Tao},
    booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
    volume={35},
    number={4},
    pages={3421--3429},
    year={2021}
}

Acknowledgment

Note that this code is heavily borrowed from RandLA-Net (https://github.com/QingyongHu/RandLA-Net).

You might also like...
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

The code is for the paper
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

Owner
null
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

null 75 Nov 24, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

null 15 Nov 30, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 1, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

null 44 Dec 12, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

null 1 Nov 12, 2021
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

null 9 Nov 14, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

null 54 Dec 12, 2022