[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

Related tags

Deep Learning wseg
Overview

wseg

Overview

The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast.

[arXiv]

Though image-level weakly supervised semantic segmentation (WSSS) has achieved great progress with Class Activation Maps (CAMs) as the cornerstone, the large supervision gap between classification and segmentation still hampers the model to generate more complete and precise pseudo masks for segmentation. In this study, we propose weakly-supervised pixel-to-prototype contrast that can provide pixel-level supervisory signals to narrow the gap. Guided by two intuitive priors, our method is executed across different views and within per single view of an image, aiming to impose cross-view feature semantic consistency regularization and facilitate intra(inter)-class compactness(dispersion) of the feature space. Our method can be seamlessly incorporated into existing WSSS models without any changes to the base networks and does not incur any extra inference burden. Extensive experiments manifest that our method consistently improves two strong baselines by large margins, demonstrating the effectiveness.

图片

Prerequisites

Preparation

  1. Clone this repository.
  2. Data preparation. Download PASCAL VOC 2012 devkit following instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit. It is suggested to make a soft link toward downloaded dataset. Then download the annotation of VOC 2012 trainaug set (containing 10582 images) from https://www.dropbox.com/s/oeu149j8qtbs1x0/SegmentationClassAug.zip?dl=0 and place them all as VOC2012/SegmentationClassAug/xxxxxx.png. Download the image-level labels cls_label.npy from https://github.com/YudeWang/SEAM/tree/master/voc12/cls_label.npy and place it into voc12/, or you can generate it by yourself.
  3. Download ImageNet pretrained backbones. We use ResNet-38 for initial seeds generation and ResNet-101 for segmentation training. Download pretrained ResNet-38 from https://drive.google.com/file/d/15F13LEL5aO45JU-j45PYjzv5KW5bn_Pn/view. The ResNet-101 can be downloaded from https://download.pytorch.org/models/resnet101-5d3b4d8f.pth.

Model Zoo

Download the trained models and category performance below.

baseline model train(mIoU) val(mIoU) test (mIoU) checkpoint category performance
SEAM contrast 61.5 58.4 - [download]
affinitynet 69.2 - [download]
deeplabv1 - 67.7* 67.4* [download] [link]
EPS contrast 70.5 - - [download]
deeplabv1 - 72.3* 73.5* [download] [link]
deeplabv2 - 72.6* 73.6* [download] [link]

* indicates using densecrf.

The training results including initial seeds, intermediate products and pseudo masks can be found here.

Usage

Step1: Initial Seed Generation with Contrastive Learning.

  1. Contrast train.

    python contrast_train.py  \
      --weights $pretrained_model \
      --voc12_root VOC2012 \
      --session_name $your_session_name \
      --batch_size $bs
    
  2. Contrast inference.

    Download the pretrained model from https://1drv.ms/u/s!AgGL9MGcRHv0mQSKoJ6CDU0cMjd2?e=dFlHgN or train from scratch, set --weights and then run:

    python contrast_infer.py \
      --weights $contrast_weight \ 
      --infer_list $[voc12/val.txt | voc12/train.txt | voc12/train_aug.txt] \
      --out_cam $your_cam_npy_dir \
      --out_cam_pred $your_cam_png_dir \
      --out_crf $your_crf_png_dir
    
  3. Evaluation.

    Following SEAM, we recommend you to use --curve to select an optimial background threshold.

    python eval.py \
      --list VOC2012/ImageSets/Segmentation/$[val.txt | train.txt] \
      --predict_dir $your_result_dir \
      --gt_dir VOC2012/SegmentationClass \
      --comment $your_comments \
      --type $[npy | png] \
      --curve True
    

Step2: Refine with AffinityNet.

  1. Preparation.

    Prepare the files (la_crf_dir and ha_crf_dir) needed for training AffinityNet. You can also use our processed crf outputs with alpha=4/8 from here.

    python aff_prepare.py \
      --voc12_root VOC2012 \
      --cam_dir $your_cam_npy_dir \
      --out_crf $your_crf_alpha_dir 
    
  2. AffinityNet train.

    python aff_train.py \
      --weights $pretrained_model \
      --voc12_root VOC2012 \
      --la_crf_dir $your_crf_dir_4.0 \
      --ha_crf_dir $your_crf_dir_8.0 \
      --session_name $your_session_name
    
  3. Random walk propagation & Evaluation.

    Use the trained AffinityNet to conduct RandomWalk for refining the CAMs from Step1. Trained model can be found in Model Zoo (https://1drv.ms/u/s!AgGL9MGcRHv0mQXi0SSkbUc2sl8o?e=AY7AzX).

    python aff_infer.py \
      --weights $aff_weights \
      --voc12_root VOC2012 \
      --infer_list $[voc12/val.txt | voc12/train.txt] \
      --cam_dir $your_cam_dir \
      --out_rw $your_rw_dir
    
  4. Pseudo mask generation. Generate the pseudo masks for training the DeepLab Model. Dense CRF is used in this step.

    python aff_infer.py \
      --weights $aff_weights \
      --infer_list voc12/trainaug.txt \
      --cam_dir $your_cam_dir \
      --voc12_root VOC2012 \
      --out_rw $your_rw_dir
    

Step3: Segmentation training with DeepLab

  1. Training.

    we use the segmentation repo from https://github.com/YudeWang/semantic-segmentation-codebase. Training and inference codes are available in segmentation/experiment/. Set DATA_PSEUDO_GT: $your_pseudo_label_path in config.py. Then run:

    python train.py
    
  2. Inference.

    Check test configration in config.py (ckpt path, trained model: https://1drv.ms/u/s!AgGL9MGcRHv0mQgpb3QawPCsKPe9?e=4vly0H) and val/test set selection in test.py. Then run:

    python test.py
    

    For test set evaluation, you need to download test set images and submit the segmentation results to the official voc server.

For integrating our approach into the EPS model, you can change branch to EPS via:

git checkout eps

Then conduct train or inference following instructions above. Segmentation training follows the same repo in segmentation. Trained models & processed files can be download in Model Zoo.

Acknowledgements

We sincerely thank Yude Wang for his great work SEAM in CVPR'20. We borrow codes heavly from his repositories SEAM and Segmentation. We also thank Seungho Lee for his EPS and jiwoon-ahn for his AffinityNet and IRN. Without them, we could not finish this work.

Citation

@inproceedings{du2021weakly,
  title={Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast},
  author={Du, Ye and Fu, Zehua and Liu, Qingjie and Wang, Yunhong},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}
You might also like...
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

Per-Pixel Classification is Not All You Need for Semantic Segmentation
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

Owner
Ye Du
Ye Du
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 3, 2023
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 2, 2023
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 1, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

null 54 Dec 12, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 7, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

null 44 Dec 12, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021