Image-specific Convolutional Kernel Modulation for Single Image Super-resolution
This repository is for IKM introduced in the following paper
Yuanfei Huang, Jie Li, Yanting Hu, Hua Huang and Xinbo Gao*, "Image-specific Convolutional Kernel Modulation for Single Image Super-resolution", arXiv preprint arXiv:2111.08362(2021)
Overflow
Dependenices
- python 3.8
- pytorch >= 1.7.0
- NVIDIA GPU + CUDA
Data preparing
Download DIV2K and Flickr2K datasets into the path "../../Datasets/Train/DF2K".
Train
-
Replace the train dataset path '../../Datasets/Train/' and validation dataset '../../Datasets/Test/' with your training and validation datasets, respectively.
-
Set the configurations in 'option.py' as you want.
python main.py --train 'Train'
Test
-
Download models from Google Drive or BaiduYun(password: 06v3).
-
Replace the test dataset path '../../Datasets/Test/' with your datasets.
python main.py --train 'Test'
Results
Quantitative Results (PSNR/SSIM)
Qualitative Results
Citation
@misc{huang2021imagespecific,
title={Image-specific Convolutional Kernel Modulation for Single Image Super-resolution},
author={Yuanfei Huang and Jie Li and Yanting Hu and Xinbo Gao and Hua Huang},
year={2021},
eprint={2111.08362},
archivePrefix={arXiv},
primaryClass={eess.IV}
}