BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

Overview

BitPack

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Installation

  • PyTorch version >= 1.4.0
  • Python version >= 3.5
  • To install Bitpack simply run:
git clone https://github.com/Zhen-Dong/BitPack.git
cd BitPack

Usage

  • We can use BitPack pack.py to save integer checkpoints with various bitwidth, and use BitPack unpack.py to load the packed checkpoint, as shown in the demo.
  • To pack integer values that are saved in floating point format, add --force-pack-fp in the command.
  • To directly save packed checkpoint in PyTorch, please use save_quantized_state_dict() and load_quantized_state_dict() in pytorch_interface.py. If you don't want to operate jointly on state_dict, then codes inside the for loop of those two functions can be applied on every quantized tensor (ultra low-precision integer tensors) in various quantization frameworks.



Quick Start

BitPack is handy to use on various quantization frameworks. Here we show a demo that applying BitPack to save mixed-precision model generated by HAWQ.

export CUDA_VISIBLE_DEVICES=0
python pack.py --input-int-file quantized_checkpoint.pth.tar --force-pack-fp
python unpack.py --input-packed-file packed_quantized_checkpoint.pth.tar --original-int-file quantized_checkpoint.pth.tar

To get a better sense of how BitPack works, we provide a simple test that compares the original tensor, the packed tensor, and the unpacked tensor in details.

cd bitpack
python bitpack_utils.py

Results of BitPack on ResNet50

Original Precision Quantization Original Size(MB) Packed Size(MB) Compression Ratio
Floating Point Mixed-Precision(4bit/8bit) 102 13.8 7.4x
8-bit Mixed-Precision(2bit/8bit) 26 7.9 3.3x

Special Notes

  • unpack.py can be used for checking correctness. It loads and unpacks the packed model, and then compares it with the original model.

License

BitPack is released under the MIT license.

You might also like...
Official code of
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB  HUAWEI P40 NCNN benchmark: 6ms/img,
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

A tool for making map images from OpenTTD save games
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Owner
Zhen Dong
PhD student at BAIR; B.S. at PKU EECS.
Zhen Dong
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

NVIDIA Corporation 6.9k Jan 3, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3.

Zhaowei Cai 47 Dec 30, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

null 18 Sep 2, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

null 567 Dec 26, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 8, 2022