Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Overview

Ultralight-SimplePose

image

  • Support NCNN mobile terminal deployment
  • Based on MXNET(>=1.5.1) GLUON(>=0.7.0) framework
  • Top-down strategy: The input image is the person ROI detected by the object detector
  • Lightweight mobile terminal human body posture key point model(COCO 17 person_keypoints)
  • Detector:https://github.com/dog-qiuqiu/MobileNetv2-YOLOV3

Model

Mobile inference frameworks benchmark (4*ARM_CPU)

Network Resolution Inference time (NCNN/Kirin 990) FLOPS Weight size HeatmapAccuracy
Ultralight-Nano-SimplePose W:192 H:256 ~5.4ms 0.224BFlops 2.3MB 74.3%

COCO2017 val keypoints metrics evaluate

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.518
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.816
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.558
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.498
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.549
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.563
 Average Recall     (AR) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.837
 Average Recall     (AR) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.607
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.535
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.604

Install

pip install mxnet-cu101 gluoncv
pip install opencv-python cython pycocotools
  • Install mxnet according to your own cuda version

Demo

Test picture

python img_demo.py

image

Test camera stream

python cam_demo

How To Train

Download the coco2017 dataset

Train

python train_simple_pose.py

Ncnn Deploy

  • Dependent library: Opencv Ncnn
  • Read the camera video stream test by default, if you test the picture, please modify the code

Install ncnn

$ git clone https://github.com/Tencent/ncnn.git
$ cd <ncnn-root-dir>
$ mkdir -p build
$ cd build
$ make -j4
$ make install

Run ncnn sample

$ cp -rf ncnn/build/install/include ./Ultralight-SimplePose/ncnnsample/
$ cp -rf ncnn/build/install/lib ./Ultralight-SimplePose/ncnnsample/
$ g++ -o ncnnpose ncnnpose.cpp -I include/ncnn/ lib/libncnn.a `pkg-config --libs --cflags opencv` -fopenmp
$ ./ncnnpose

Ncnn Picture test results

image

Android sample


Thanks

You might also like...
Img-process-manual -  Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

Comments
  • 使用onnxruntime加载onnx模型报错

    使用onnxruntime加载onnx模型报错

    (1)INVALID_ARGUMENT : Non-zero status code returned while running BatchNormalization node. (2)Status Message: Invalid input scale: NumDimensions() != 3 参考:https://github.com/onnx/models/issues/156解决 原因:mxnet转化为onnx时,产生错误的模型,BatchNormalization(space=0)

    opened by JayL323 1
  • How to use Yolov3-Nano for object detection instead of yolo3_mobilenet1.0_coco

    How to use Yolov3-Nano for object detection instead of yolo3_mobilenet1.0_coco

    Hi,

    In the current code you are using "yolo3_mobilenet1.0_coco" for object detection. Can you please tell me how to use "Yolov3-Nano"( https://github.com/dog-qiuqiu/MobileNet-Yolo/tree/master/MobileNetV2-YOLOv3-Nano ) for object detection in the code instead of "yolo3_mobilenet1.0_coco".

    Thank you @dog-qiuqiu

    opened by sakethkhandavalli 1
Owner
qiuqiuqiuqiu ...球
null
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 4, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 7, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

null 1 Aug 9, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

null 567 Dec 26, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 9, 2023
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

null 129 Jan 4, 2023