A ssl analyzer which could analyzer target domain's certificate.

Overview

ssl_analyzer

A ssl analyzer which could analyzer target domain's certificate.

Analyze the domain name ssl certificate information according to the input csv file (the csv file path can be entered in the configuration section), and write the detailed information into the mysql database. After the container starts, users can connect to mysql through the mysql client to view the analysis results (The startup demo video is shown below).

Get start

  1. git clone https://github.com/vincentbin/ssl_analyzer.git
  2. cd ssl_analyzer
  3. docker-compose up --build

Configurations (optional)

  • analyzer.conf
[script]
# Use multi-thread or not
multi_thread=True
# The number of threads used by the task
thread_num=20
# The location of hosts csv file
hosts_csv_filename=./data/top-1m.csv
# The amount of hosts user want to analyze (Set to 0 to analyze all csv content)
analyze_num=120000

Database connection info

  • username: root
  • password: 123456

Running process is shown in the video below.

running_process1.5x.mp4

Code structure

.
├── analysis
│   ├── analysis_data.sql       // SQL statement for data analysis
│   ├── analysis_data_v2.ipynb  // Statistical analysis of the result data collected by the system
├── data
│   ├── cacert.pem              // Root certificate information
│   ├── certificate_table.csv   // Database storage results csv export file
│   ├── top-1m.csv              // Input domain name file (this file can be customized to specify the domain names you want to analyze)
├── db
│   ├── certificateTable.sql    // MySQL table design SQL for storing certificate details
│   ├── creatDB.sql             // Mysql build database SQL for container init
│   ├── init.sql                // Mysql container initialization SQL
│   ├── utf8mb4.cnf             // Mysql configuration settings
│   ├── Dockerfile              // Mysql Dockerfile
├── conf_reader.py              // Get analyzer.conf file's configuration information
├── crl_checker.py              // CRL check related code
├── db.py                       // Database related operation code
├── ssl_analyzer.py             // Code related to requesting domain name acquisition and parsing certificate information
├── requirements.txt            // Project dependencies
├── Dockerfile                  // Python script container
├── docker-compose.yml          // Configuration file for starting db & script containers
├── Dockerfile                  // Python script container
├── LICENSE                     // LICENSE
├── README                      // README

Our Analysis

Use 20 threads to execute and analyze 120,000 domain name information in the top-1m file concurrently.

Result

http://nbviewer.org/github/vincentbin/ssl_analyzer/blob/main/analysis/analysis_data_v2.ipynb

You might also like...
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a pseudo-rigid domain.

This is the official Pytorch implementation of the paper
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Owner
vincent
Back-end developer & Coding lover
vincent
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 7, 2023
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

null 52 Nov 30, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

null 514 Dec 28, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

null 12 Feb 8, 2022