Pytorch implementation of RED-SDS (NeurIPS 2021).

Related tags

Deep Learning REDSDS
Overview

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS)

Venue:NeurIPS 2021

This repository contains a reference implementation of RED-SDS, a non-linear state space model proposed in the NeurIPS 2021 paper Deep Explicit Duration Switching Models for Time Series.

Environment Setup

  • Run pip install -r requirements.txt.

Usage

Reevaluating Trained Models

  • Download the trained models from this link.
  • Run python reevaluate.py --ckpt <model-path>.pt.

Training Models

Segmentation

  • Generate/download datasets.
    • To generate the bouncing ball and 3 mode system datasets, use the notebooks in ./data/. Alternatively, you can download the datasets from this link.
    • To download and preprocess the dancing bees dataset, run ./data/bee.sh.
  • Run python run_segmentation.py --config configs/<config>.yaml --device cuda:0 to train the RED-SDS model.
  • Run tensorboard --logdir /path/to/results/dir to visualize results.

Forecasting

  • Run python run_gts_univariate.py --config configs/<config>.yaml --device cuda:0 to train the RED-SDS model. The dataset will be downloaded automatically.
  • Run tensorboard --logdir /path/to/results/dir to visualize results.

Questions

For any questions regarding the code or the paper, please email Fatir, Konstantinos, or Richard.

BibTeX

If you find this repository or the ideas presented in our paper useful for your research, please consider citing our paper.

@inproceedings{ansari2021deep,
  author    = {Abdul Fatir Ansari and Konstantinos Benidis and Richard Kurle and Ali Caner Turkmen and Harold Soh and Alex Smola and Bernie Wang and Tim Januschowski},
  title     = {Deep Explicit Duration Switching Models for Time Series},
  year      = {2021},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
}

Acknowledgement

This repo contains parts of code based on the following repos:

Repo Copyright (c) License
google-research/google-research/snlds The Google Research Authors Apache 2.0
mattjj/pyslds Matthew James Johnson MIT
You might also like...
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Official implementation of Generalized Data Weighting via Class-level Gradient Manipulation (NeurIPS 2021).
Official implementation of Generalized Data Weighting via Class-level Gradient Manipulation (NeurIPS 2021).

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

Official implementation of NeurIPS'2021 paper TransformerFusion
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Owner
Abdul Fatir
CS PhD Student @ National University of Singapore
Abdul Fatir
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).

null 3.4k Jan 4, 2023
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

null 2 Feb 16, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 1, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 8, 2023
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

null 76 Jan 3, 2023
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

null 77 Dec 16, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

null 51 Dec 3, 2022