Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Related tags

Deep Learning DCVC
Overview

Introduction

Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Prerequisites

  • Python 3.8 and conda, get Conda
  • CUDA 11.0
  • Environment
    conda create -n $YOUR_PY38_ENV_NAME python=3.8
    conda activate $YOUR_PY38_ENV_NAME
    
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    python -m pip install -r requirements.txt
    

Test dataset

Currenlty the spatial resolution of video needs to be cropped into the integral times of 64.

The dataset format can be seen in dataset_config_example.json.

For example, one video of HEVC Class B can be prepared as:

  • Crop the original YUV via ffmpeg:
    ffmpeg -pix_fmt yuv420p  -s 1920x1080 -i  BasketballDrive_1920x1080_50.yuv -vf crop=1920:1024:0:0 BasketballDrive_1920x1024_50.yuv
    
  • Make the video path:
    mkdir BasketballDrive_1920x1024_50
    
  • Convert YUV to PNG:
    ffmpeg -pix_fmt yuv420p -s 1920x1024 -i BasketballDrive_1920x1024_50.yuv   -f image2 BasketballDrive_1920x1024_50/im%05d.png
    

At last, the folder structure of dataset is like:

/media/data/HEVC_B/
    * BQTerrace_1920x1024_60/
        - im00001.png
        - im00002.png
        - im00003.png
        - ...
    * BasketballDrive_1920x1024_50/
        - im00001.png
        - im00002.png
        - im00003.png
        - ...
    * ...
/media/data/HEVC_D
/media/data/HEVC_C/
...

Pretrained models

  • Download CompressAI models

    cd checkpoints/
    python download_compressai_models.py
    cd ..
    
  • Download DCVC models and put them into /checkpoints folder.

Test DCVC

Example of test the PSNR model:

python test_video.py --i_frame_model_name cheng2020-anchor  --i_frame_model_path  checkpoints/cheng2020-anchor-3-e49be189.pth.tar  checkpoints/cheng2020-anchor-4-98b0b468.pth.tar   checkpoints/cheng2020-anchor-5-23852949.pth.tar   checkpoints/cheng2020-anchor-6-4c052b1a.pth.tar  --test_config     dataset_config_example.json  --cuda true --cuda_device 0,1,2,3   --worker 4   --output_json_result_path  DCVC_result_psnr.json    --model_type psnr  --recon_bin_path recon_bin_folder_psnr --model_path checkpoints/model_dcvc_quality_0_psnr.pth  checkpoints/model_dcvc_quality_1_psnr.pth checkpoints/model_dcvc_quality_2_psnr.pth checkpoints/model_dcvc_quality_3_psnr.pth

Example of test the MSSSIM model:

python test_video.py --i_frame_model_name bmshj2018-hyperprior  --i_frame_model_path  checkpoints/bmshj2018-hyperprior-ms-ssim-3-92dd7878.pth.tar checkpoints/bmshj2018-hyperprior-ms-ssim-4-4377354e.pth.tar    checkpoints/bmshj2018-hyperprior-ms-ssim-5-c34afc8d.pth.tar    checkpoints/bmshj2018-hyperprior-ms-ssim-6-3a6d8229.pth.tar   --test_config   dataset_config_example.json  --cuda true --cuda_device 0,1,2,3   --worker 4   --output_json_result_path  DCVC_result_msssim.json  --model_type msssim  --recon_bin_path recon_bin_folder_msssim --model_path checkpoints/model_dcvc_quality_0_msssim.pth checkpoints/model_dcvc_quality_1_msssim.pth checkpoints/model_dcvc_quality_2_msssim.pth checkpoints/model_dcvc_quality_3_msssim.pth

It is recommended that the --worker number is equal to your GPU number.

Acknowledgement

The implementation is based on CompressAI and PyTorchVideoCompression. The model weights of intra coding come from CompressAI.

Citation

If you find this work useful for your research, please cite:

@article{li2021deep,
  title={Deep Contextual Video Compression},
  author={Li, Jiahao and Li, Bin and Lu, Yan},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Comments
  • Decoding frame failed when writing stream

    Decoding frame failed when writing stream

    Dear authors, Thanks for your sharing such an excellent model. It is fascinating and innovative. However, I have met a problem when I am opening the writing stream option. As shown in Figure, the decoded frame is almost black except for some areas at the top-left corner. Have you ever had this problem and could you share some experience? Thank you very much. Looking forward to your reply. Best regards recon_frame_1

    opened by guohf3 6
  • About dataset_config_example.json

    About dataset_config_example.json

    Nice work! A small mistake in dataset_config_example,HEVC_B sequence in dataset_config.json should be : "HEVC_B": { "base_path": "", "sequences": { "BasketballPass_384x192_50": {"frames": 100, "gop": 10}, "BlowingBubbles_384x192_50": {"frames": 100, "gop": 10}, "BQSquare_384x192_60": {"frames": 100, "gop": 10}, "RaceHorses_384x192_30": {"frames": 100, "gop": 10} } } The results are consistent with the paper's curve.

    opened by wsxtyrdd 2
  • About lambda in training

    About lambda in training

    Because the loss is \lambda D + R, when I even use \lambda=256 with MSE loss, the \lambda D part is much more than R part, which make bpp_mv_y be 0.

    I wonder how can I solve th problem?

    Besides, I follow the progressive training steps. But in step 1, I meet the problem.

    opened by fanqiNO1 0
  • About constant quantization parameter

    About constant quantization parameter

    Hello, I'm interested in your study. And I want to know how the constant quantization parameter of x264 and x265 is set. Exactly, I want to know which qp values did you use.

    Thanks!

    opened by fanqiNO1 0
  • Step 3 of the training process does not converge.

    Step 3 of the training process does not converge.

    Dear author, first of all, thank you very much for sharing your excellent research. It is very innovative and gets outstanding results. I'm trying to write training code based on your article's description. But I encountered a problem in the third stage of training. When I train the whole framework using Loss contextual_coding with only freezing the MV generation part, the bpp of y continues to rise. Although the bpp of z has a slight decrease (the strange thing is that it reaches 0 quickly), the overall bpp shows an upward trend. I tried to reduce the learning rate to 1e-5, but this phenomenon still exists. I put the test results for each epoch below. Looking forward to your reply. Thank you very much. Fig1: The test result of Step 2. Fig2: The test result of the first epoch in Step 3. Fig3: The test result of the second epoch in Step 3. Fig4: The test result of the third epoch in Step 3. lll (2)

    opened by z1296 21
Owner
null
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

null 46 Dec 7, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

null 16 Nov 28, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 1, 2023
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN ?? This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

null 3 May 1, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

null 39 Dec 24, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of <Group Fisher Pruning for Practical Network Compression> based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 6, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

null 449 Dec 27, 2022