MultiTaskLearning - Multi Task Learning for 3D segmentation

Overview

Multi Task Learning for 3D segmentation

Perception stack of an Autonomous Driving system often contains multiple neural networks working together to predict bounding boxes, segmentation maps, depth maps, lane lines etc. Having a separate neural network for each task creates an heavy impact on system's processing speed.

This repository contains implementation of a multi task learning based neural network presented in [1]. The attempt is to implement an architecture that has an encoder decoder structure. It takes RGB image as an input and predicts a segmentation mask and a depth map in a single forward pass. The idea is to have a common backbone for extracting feature map. Then according to the required task decoder structure are plugged on to this encoder to generate predictions. This sort of networks are essential for Autonomous Driving.

Architecture

Model architecture can be understood by perceiving it as an encoder decoder structure.

For Encoder : A lightweight MobileNet V2 was used. Feature maps are extracted from multiple levels of the network. These feature maps are concatenated during upsampling to the layer outputs in decoders at corresponding levels

For Decoder : A lightweight RefineNet architecture was used which contains CRP blocks. The decoder consistently upsamples feature maps from encoder. Before the penultimate layer level, decoder splits into two heads for segmentation mask of input image and depth of image.

2-Figure1-1

Dataset:

Model has been tested with KITTI and NYU-D dataset. Both datasets provide set of RGB Image, Segmentation Mask and Depth Map for each data point.

Results:

The model was tested on KITTI scenes for highway and residential drives. As an output model predicts a segmentation map and a depth map in a single forward pass. The segmentation mask and the depth map can be fused using libraries like Open3D to create a Point Cloud representation of 3D objects in each scene. We can not only get classification and pixel coordinates of each object in the image but we can also go a step ahead and compute their depth from the vehicle in real world.

Another way these results can be interpreted is in the form of a point cloud of depth segmentation map. Open3D has functionality to reproduce a full fledged Point Cloud using RGB and Depth image pair.

Model Input/output:

3D Segmentation point cloud:

References [1] Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations Vladimir Nekrasov, Thanuja Dharmasiri, Andrew Spek, Tom Drummond, Chunhua Shen, Ian Reid In ICRA 2019 (https://arxiv.org/pdf/1809.04766.pdf)

You might also like...
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

FocusFace: Multi-task Contrastive Learning for Masked Face Recognition
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image;

Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Comments
  • Using Hydranet on Kitti dataset

    Using Hydranet on Kitti dataset

    Hi, I would like to use your pretrained Hydranet for depth prediction on the Kitti dataset, as you did in your paper. Unfortunately, in the repo I can only find the files for the NYU-D dataset. It would be great if you could also provide the code (e.g. dataloader and pretrained neural net) you used when you did the investigations regarding Kitti. Many thanks!

    opened by MarSpit 3
  • Where can I find KITTI's semantic dataset?

    Where can I find KITTI's semantic dataset?

    Hi adithya, I wonder where can I find KITTI's semantic dataset? I only found 200 semantic data but I see that you have a lot more. Thanks in advance!!

    opened by dvando 1
Owner
null
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 385 Jan 6, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

null 94 Dec 22, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey paper.

svandenh 297 Dec 17, 2022
A list of multi-task learning papers and projects.

A list of multi-task learning papers and projects.

svandenh 84 Apr 27, 2021
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 7, 2022