Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Overview

Improving evidential deep learning via multi task learning

It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task learning”, by Dongpin Oh and Bonggun Shin.

This repository contains the code to reproduce the Multi-task evidential neural network (MT-ENet), which uses the Lipschitz MSE loss function as the additional loss function of the evidential regression network (ENet). The Lipschitz MSE loss function can improve the accuracy of the ENet while preserving its uncertainty estimation capability, by avoiding gradient conflict with the NLL loss function—the original loss function of the ENet.

drawing

Setup

Please refer to "requirements.txt" for requring packages of this repo.

pip install -r requirements.txt

Training the ENet with the Lipschitz-MSE loss: example

from mtevi.mtevi import EvidentialMarginalLikelihood, EvidenceRegularizer, modified_mse
...
net = EvidentialNetwork() ## Evidential regression network
nll_loss = EvidentialMarginalLikelihood() ## original loss, NLL loss
reg = EvidenceRegularizer() ## evidential regularizer
mmse_loss = modified_mse ## lipschitz MSE loss
...
for inputs, labels in dataloader:
	gamma, nu, alpha, beta = net(inputs)
	loss = nll_loss(gamma, nu, alpha, beta, labels)
	loss += reg(gamma, nu, alpha, beta, labels)
	loss += mmse_loss(gamma, nu, alpha, beta, labels)
	loss.backward()	

Quick start

  • Synthetic data experiment.
python synthetic_exp.py
  • UCI regression benchmark experiments.
python uci_exp_norm -p energy
  • Drug target affinity (DTA) regression task on KIBA and Davis datasets.
python train_evinet.py -o test --type davis -f 0 --evi # ENet
python train_evinet.py -o test --type davis -f 0  # MT-ENet
  • Gradient conflict experiment on the DTA benchmarks
python check_conflict.py --type davis -f 0 # Conflict between the Lipschitz MSE (proposed) and NLL loss. 
python check_conflict.py --type davis -f 0 --abl # Conflict between the simple MSE loss and NLL loss.

Characteristic of the Lipschitz MSE loss

drawing

  • The Lipschitz MSE loss function can support training the ENet to more accurately predicts target values.
  • It regularizes its gradient to prevent gradient conflict with the NLL loss--the original loss function--if the NLL loss increases predictive uncertainty of the ENet.
  • Please check our paper for details.
You might also like...
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Repository to run object detection on a model trained on an autonomous driving dataset.
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

Owner
deargen
deargen
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

null 50 Nov 26, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
null 190 Jan 3, 2023
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

null 88 Nov 22, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022