[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

Overview

NYU-VPR

This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences.

Here is a graphical user interface (GUI) for using VPR methods on custom datasets: https://github.com/ai4ce/VPR-GUI-Tool

Requirements

To install requirements:

pip install -r requirements.txt

Data Processing

1. Image Anonymization

To install mseg-api:

cd segmentation
cd mseg-api
pip install -e .

Make sure that you can run python -c "import mseg" in python.

To install mseg-semantic:

cd segmentation
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

cd ../mseg-semantic
pip install -e .

Make sure that you can run python -c "import mseg_semantic" in python.

Finally:

input_file=/path/to/my/directory
model_name=mseg-3m
model_path=mseg_semantic/mseg-3m.pth
config=mseg_semantic/config/test/default_config_360_ms.yaml
python -u mseg_semantic/tool/universal_demo.py --config=${config} model_name {model_name} model_path ${model_path} input_file ${input_file}

2. Image Filtration

Inside the process folder, use whiteFilter.py to filter images with white pixel percentage.

Methods

1. VLAD+SURF

Modify vlad_codebook_generation.py line 157 - 170 to fit the dataset.

cd test/vlad
python vlad_codebook_generation.py
python query_image_closest_image_generation.py

*Notice: the processing may take a few hours.

2. VLAD+SuperPoint

cd test/vlad_SP
python main.py
python find_closest.py

*Notice: the processing may take a few hours.

3. NetVLAD

4. PoseNet

Copy the train_image_paths.txt and test_image_paths.txt to test/posenet.

Obtain the latitude and longtitude of training images and convert them to normalized Universal Transverse Mercator (UTM) coordinates.

cd test/posenet
python getGPS.py
python mean.py

Start training. This may take several hours. Suggestion: use slurm to run the process.

python train.py --image_path path_to_train_images/ --metadata_path trainNorm.txt

Generate the input file for testing from test_image_paths.txt.

python gen_test_txt.py

Start testing.

python single_test.py --image_path path_to_test_images/ --metadata_path test.txt --weights_path models_trainNorm/best_net.pth

The predicted normalized UTM coordinates of test images is in the image_name.txt. Match the test images with the training images based on their location.

python match.py

The matching result is in the match.txt.

5. DBoW

Copy the train_image_paths.txt and test_image_paths.txt to test/DBow3/utils. Copy and paste the content of test_image_paths.txt at the end of train_image_paths.txt and save the text file as total_images_paths.txt.

Open test/DBow3/utils/demo_general.cpp file. Change the for loop range at line 117 and line 123. Both ranges are the range of lines in total_images_paths.txt. The first for loop range is the range of test images and the second range is the range of training images. To run with multi-thread, you may run the code multiple times with small ranges of test images where the sum of ranges equals to the number of lines in test_image_paths.txt.

Compile and run the code.

cd test/DBow3
cmake .
cd utils
make
./demo_general a b

The result of each test image and its top-5 matched training images is in the output.txt.

You might also like...
PyTorch implementation for our NeurIPS 2021 Spotlight paper
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

Implementation of
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions. MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

The code for our paper submitted to RAL/IROS 2022:  OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 6, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

null 29 Oct 1, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

null 1 Dec 20, 2021
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 8, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

null 5 Nov 12, 2021
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 8, 2023