Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

Overview

OCR Ground Truth for Historical Commentaries

DOI License: CC BY 4.0

The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public domain subset of scholarly commentaries on Sophocles' Ajax. Its main goal is to enable the evaluation of the OCR quality on printed materials that contain a mix of Latin and polytonic Greek scripts. It consists of five 19C commentaries written in German, English, and Latin, for a total of 3,356 GT lines.

Data

GT4HistComment are contained in data/, where each sub-folder corresponds to a different publication (i.e. commentary). For each each commentary we provide the following data:

  • <commentary_id>/GT-pairs: pairs of image/text files for each GT line
  • <commentary_id>/imgs: original images on which the OCR was performed
  • <commentary_id>/<commentary_id>_olr.tsv: OLR annotations with image region coordinates and layout type ground truth label

The OCR output produced by the Kraken + Ciaconna pipeline was manually corrected by a pool of annotators using the Lace platform. In order to ensure the quality of the ground truth datasets, an additional verification of all transcriptions made in Lace was carried out by an annotator on line-by-line pairs of image and corresponding text.

Commentary overview

ID Commentator Year Languages Image source Line example
bsb10234118 Lobeck [1] 1835 Greek, Latin BSB
sophokle1v3soph Schneidewin [2] 1853 Greek, German Internet Archive
cu31924087948174 Campbell [3] 1881 Greek, English Internet Archive
sophoclesplaysa05campgoog Jebb [4] 1896 Greek, English Internet Archive
Wecklein1894 Wecklein [5] 1894 [5] Greek. German internal

Stats

Line, word and char counts for each commentary are indicated in the following table. Detailled counts for each region can be found here.

ID Commentator Type lines words all chars greek chars
bsb10234118 Lobeck training 574 2943 16081 5344
bsb10234118 Lobeck groundtruth 202 1491 7917 2786
sophokle1v3soph Schneidewin training 583 2970 16112 3269
sophokle1v3soph Schneidewin groundtruth 382 1599 8436 2191
cu31924087948174 Campbell groundtruth 464 2987 14291 3566
sophoclesplaysa05campgoog Jebb training 561 4102 19141 5314
sophoclesplaysa05campgoog Jebb groundtruth 324 2418 10986 2805
Wecklein1894 Wecklein groundtruth 211 1912 9556 3268

Commentary editions used:

  • [1] Lobeck, Christian August. 1835. Sophoclis Aiax. Leipzig: Weidmann.
  • [2] Sophokles. 1853. Sophokles Erklaert von F. W. Schneidewin. Erstes Baendchen: Aias. Philoktetes. Edited by Friedrich Wilhelm Schneidewin. Leipzig: Weidmann.
  • [3] Lewis Campbell. 1881. Sophocles. Oxford : Clarendon Press.
  • [4] Wecklein, Nikolaus. 1894. Sophokleus Aias. München: Lindauer.
  • [5] Jebb, Richard Claverhouse. 1896. Sophocles: The Plays and Fragments. London: Cambridge University Press.

Citation

If you use this dataset in your research, please cite the following publication:

@inproceedings{romanello_optical_2021,
  title = {Optical {{Character Recognition}} of 19th {{Century Classical Commentaries}}: The {{Current State}} of {{Affairs}}},
  booktitle = {The 6th {{International Workshop}} on {{Historical Document Imaging}} and {{Processing}} ({{HIP}} '21)},
  author = {Romanello, Matteo and Sven, Najem-Meyer and Robertson, Bruce},
  year = {2021},
  publisher = {{Association for Computing Machinery}},
  address = {{Lausanne}},
  doi = {10.1145/3476887.3476911}
}

Acknowledgements

Data in this repository were produced in the context of the Ajax Multi-Commentary project, funded by the Swiss National Science Foundation under an Ambizione grant PZ00P1_186033.

Contributors: Carla Amaya (UNIL), Sven Najem-Meyer (EPFL), Matteo Romanello (UNIL), Bruce Robertson (Mount Allison University).

You might also like...
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Comments
  • adds line-, word- and char-counts to README.md

    adds line-, word- and char-counts to README.md

    Adds a table to README.md as suggested by reviewer 1. The table also link to a more complete table, itself a public version of spreadsheet OCR evaluation and stats!detailed_counts. Note that the publishable version is an external reference to our private version, meaning that actualising the latter will also update the former.

    opened by sven-nm 0
  • Pages à exclure - OCR

    Pages à exclure - OCR

    La page contient les schémas métriques des passages. De ce fait l'OCR ne les reconnaît pas, de plus la correction de l'OCR n'a pas été achevée.

    Voici les pages à exclure : sophoclesplaysa05campgoog_0072.png (Jebb, p. 72)

    opened by camaya28 0
Releases(v1.0)
Owner
Ajax Multi-Commentary
How does a classical hero die in the digital age? Using Sophocles’ Ajax to create a commentary on commentaries.
Ajax Multi-Commentary
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

null 57 Dec 29, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

null 260 Jan 5, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work ?? Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 9, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work ?? Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 9, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

null 168 Dec 24, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

null 25 Jul 20, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 7, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

null 1 Nov 12, 2021