Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Overview

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY IS INCOMPLETE

This is a repository of introductory autonomous ground vehicle (i.e., wheeled mobile robot) simulation examples in Python. The purpose of these examples is to provide easy-to-follow code that is illustrative of a number of fundamental mobile robot modelling, control, and navigation (localization, mapping) concepts. Motion planning problems lie beyond the scope of this example set. The focus here is on ground vehicles, although the presented techniques are also applicable more broadly. This code was initially developed to supplement topics covered in the course ELEC 845 Autonomous Vehicle Control & Navigation in the Department of Electrical & Computer Engineering at Queen's University.

MoBotPy Package

The repository also includes a supporting Python package MoBotPy (mobotpy) that contains some code that is used repeatedly. Code developed in the worked examples is subsequently added to MoBotPy.

Module Filename Description
integration.py Provides basic Runge-Kutta and Euler integration functions.
models.py Provides standard vehicle models, plotting, and animation methods.
graphics.py Provides some basic shape plotting functions (used by models.py).

Tables of Examples in this Repository

This section provides a list of the examples in this repository.

Introductory Linear System Examples

These examples provide a review of basic concepts from control systems engineering in preparation for more advanced methods.

Filename Description
oneD_kinematic.py Simulation of a linear 1D kinematic vehicle.
oneD_dynamic.py Simulation of a linear 1D dynamic vehicle.
oneD_kinematic_control.py Point stabilization of a linear 1D kinematic vehicle.
oneD_dynamic_control.py Point stabilization of a linear 1D dynamic vehicle.
oneD_discrete_control.py Point stabilization of a linear 1D dynamic vehicle in discrete time.
oneD_integral_control.py Example illustrating integral action for disturbance rejection.
oneD_dynamic_observer.py State estimation for a linear 1D dynamic vehicle.
oneD_combined_control.py Example illustrating control combined with a state estimator.

Vehicle Modelling Examples

These examples provide simple models for a variety of commonly used wheeled vehicles.

Filename Description
diffdrive_kinematic.py Simulation of a differential drive vehicle's kinematics.
tricycle_kinematic.py Simulation of a tricycle vehicle's kinematics.
ackermann_kinematic.py Simulation of an Ackermann steered (car-like) vehicle's kinematics.

Cite this Work

You may wish to cite this work in your publications.

Joshua A. Marshall, Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python, 2021, URL: https://github.com/botprof/agv-examples.

You might also use the BibTeX entry below.

@misc{Marshall2021,
  author = {Marshall, Joshua A.},
  title = {Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python},
  year = {2021},
  howpublished = {\url{https://github.com/botprof/agv-examples}}
}

Contact the Author

Joshua A. Marshall, PhD, PEng
Department of Electrical & Computer Engineering
Queen's University
Kingston, ON K7L 3N6 Canada
+1 (613) 533-2921
[email protected]

License

Source code examples in this notebook are subject to an MIT License.

You might also like...
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

 Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

Vehicle Detection Using Deep Learning and YOLO Algorithm
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

Releases(v0.4.2)
Owner
Joshua Marshall
Professor and engineering scientist in field and mobile robotics.
Joshua Marshall
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

null 185 Dec 26, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 9, 2023
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 6, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

null 105 Dec 18, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 2, 2023
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 1, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 2, 2023
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021