Code for Multimodal Neural SLAM for Interactive Instruction Following

Overview

Code for Multimodal Neural SLAM for Interactive Instruction Following

Code structure

The code is adapted from E.T. and most training as well as data processing files are in currently in the ET/notebooks folder and the et_train folder.

Dependency

Inherited from the E.T. repo, the package is depending on:

  • numpy
  • pandas
  • opencv-python
  • tqdm
  • vocab
  • revtok
  • numpy
  • Pillow
  • sacred
  • etaprogress
  • scikit-video
  • lmdb
  • gtimer
  • filelock
  • networkx
  • termcolor
  • torch==1.7.1
  • torchvision==0.8.2
  • tensorboardX==1.8
  • ai2thor==2.1.0
  • E.T. (https://github.com/alexpashevich/E.T.)

MaskRCNN Fine-tuning

To fine-tune the MaskRCNN module used in solving the Alfred challenge, we provide the code adapted from the official PyTorch tutorial.

Setup

We assume the environment and the code structure as in the E.T. model is set up, with this repo served as an extension. Although the fine-tuning code should be a standalone unit.

Training Data Geneation

Given a traj_data.json file (e.g., the 45K one used in E.T. joint-training here), run python -m alfred.gen.render_trajs as in E.T. to render the training inputs (raw images) and the ground truth labels (instance segmentation masks) for all the frames recorded in the traj_data.json files. Make sure the flag for generating instance level segmentation masks is set to True.

Pre-processing Instance Segmentation Masks

The rendered instance segmentation masks need to be preprocessed so that the data format is aligned with the one used in the official PyTorch tutorial. In specific, each generated mask is of a different RGB color per instance, which is mapped to the unique instance index in the frame as well as a label index for its semantic class. The mapping is constructed by looking up the traj['scene']['color_to_object_type'] in each of the json dictionaries. The code also supports the functionality to only collect training data from certain subgoal data (such as for PickupObject in Alfred). Notice that there are some bugs in the rendering process of the masks which creates some artifacts (small regions in the ground truth labels that correspond to no actual objects). This can be fixed by only selecting instance masks that are larger than certain area (e.g., > 10 as in alfred/data/maskrcnn.py).

Training

Run python -m alfred.maskrcnn.train which first loads the pre-trained model provided by E.T. and then fine-tunes it on the pre-processed data mentioned above.

Evaluation

We follow the MSCOCO evaluation protocal which is widely used for object detection and instance segmentation, which output average precision and recall at multiple scales. The evaluation function call evaluate(model, data_loader_test, device=device) in alfred/maskrcnn/train.py serves as an example.

You might also like...
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

🛠️ SLAMcore SLAM Utilities
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Deep Multimodal Neural Architecture Search
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

MERLOT: Multimodal Neural Script Knowledge Models
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Comments
  • How to use the training codes in et_trains

    How to use the training codes in et_trains

    Hi

    This is an excellent work for embodied Ai. I have read the README of this repo and I would like to know how to use the training code in et_trains/. By the way, in the README, you say that some details are in ET/notebooks but I don't find this folder.

    Very thanks for your help.

    opened by wangjingbo1219 0
Owner
null
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

null 185 Dec 26, 2022
A list of papers about point cloud based place recognition, also known as loop closure detection in SLAM (processing)

A list of papers about point cloud based place recognition, also known as loop closure detection in SLAM (processing)

Xin Kong 17 May 16, 2021
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 4, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 2, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

null 117 Dec 28, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022