Individual Treatment Effect Estimation

Related tags

Deep Learning cape
Overview

CAPE

Individual Treatment Effect Estimation

Run CAPE

python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1

Run a baseline model

python train_causal_baselines.py --loop 10 -m cfrmmd -d NI --i_t 1

Event Forecasting with Causal information

Run CAPE

python train_event_with_causal.py --loop 10 -m cape -d NI 

Add noise to data

python train_event_with_causal.py --loop 10 -m cape -d NI --train_noise 0.1
You might also like...
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Official repository of the paper
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

Comments
  • How is the data processed?

    How is the data processed?

    This repository doesn't contain the code to process the input data into the pickle files in the data folder. The paper says this:

    Events are categorized into 20 main categories (e.g., appeal, demand, protest, etc.) according to CAMEO methodology [59 ]. Each event is encoded with geolocation, time (day, month, year), category, etc.

    Is it possible to release the code to do the above or at least provide a high-level description of the process in the README? I'm especially interested in how you handled the GDELT data.

    opened by oyarsa 0
Owner
S. Deng
S. Deng
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 3, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

null 14 Nov 28, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time.

OATML 360 Dec 28, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 3, 2023
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

null 12 Feb 8, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 7, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 3, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021