A simple software for capturing human body movements using the Kinect camera.

Overview

KinectMotionCapture

Build Status DOI

A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones positions for further analysis.

Features

  • Compliance with one Kinect camera connected.
  • Tracking up to two people captured on the video stream.
  • Indicating by color which joints and bones are fully tracked or inferred.
  • Recording body movements of one person. Bones and joints positions data is saved to files.
  • Adjusting joint filtering options.
  • Saving screenshots of current video stream.

The application recognizes only joints and bones that were fully tracked or inferred by the Kinect camera. Tracked joints and bones with both of their joints tracked are indicated by green color, inferred joints and bones with only one of their joints tracked are indicated by yellow color, and bones with both of their joint inferred are indicated by red color.

Although being capable of tracking up to two skeletons on the video stream, the application saves all positions as if there was only one skeleton source. Therefore, if more than one skeleton is tracked, the user should indicate the main body to be captured by using the Set body function.

For a general overview of the Kinect skeletal tracking system please refer to [1].

Functions

Set body

The Set body function allows to choose the body to be captured (and its position saved) from all other bodies present on the video stream. To use this feature, the person to be captured must stand the closest to the camera, and then the Set body button must be clicked.

Kinect smoothing parameters

The skeletal tracking joint information can be adjusted across different frames to minimize jittering and stabilize the joint positions over time. This can be done by adjusting the smoothing parameters. A comprehensive description of these options can be found at [1].

Recording

Body movement can be recorded by clicking the Start recoding button. All data recorded is saved as comma-separated files in “data” folder in the root directory of the application. For the data file to be saved the Stop recording button must be clicked afterwards. Joints positions are saved as files named “<>-joint-<>.csv”. The files include data columns which contain timestamp of a measurement (timestamp), joint x position (x), joint y position (y), joint z position (z), and coordinate type (coord_type), which indicates whether the joint was fully tracked (1) or inferred (2). Bones positions are saved as files named “<>-bone-<>-<>.csv”. The files include data columns which contain timestamp of a measurement (timestamp), bone absolute rotation matrix (abs_m11 to abs_m44), bone absolute orientation in quaternion form (abs_x, abs_y, abs_z, and abs_w), bone hierarchical rotation matrix (h_m11 to h_m44), bone hierarchical orientation in quaternion form (h_x, h_y, h_z, and h_w), and coordinate type (coord_type), which indicates whether both joints of the bone were fully tracked (1), both were inferred (2) or only one of them was tracked (3).

Requirements

  • .NET Framework 4.5.2
  • Kinect for Windows SDK v1.8

References

[1] https://msdn.microsoft.com/en-us/library/hh973074.aspx

You might also like...
 SMPL-X: A new joint 3D model of the human body, face and hands together
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Camera-caps - Examine the camera capabilities for V4l2 cameras
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

 PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

Towards Multi-Camera 3D Human Pose Estimation in Wild Environment
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

Releases(v1.1)
Owner
Aleksander Palkowski
Aleksander Palkowski
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 7, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

null 1 Aug 9, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

null 2 Jan 5, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 3, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 2, 2021
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 4, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(>=1.5.1) GLUON(>=0.7.0) framework Top-down strategy: The input image is t

null 223 Dec 27, 2022