A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Overview


PyPI Version Docs Status Repo size Code Coverage Build Status Arxiv

Documentation | External Resources | Research Paper

Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble.

The library consists of various methods to compute (approximate) the Shapley value of players (models) in weighted voting games (ensemble games) - a class of transferable utility cooperative games. We covered the exact enumeration based computation and various widely know approximation methods from economics and computer science research papers. There are also functionalities to identify the heterogeneity of the player pool based on the Shapley entropy. In addition, the framework comes with a detailed documentation, an intuitive tutorial, 100% test coverage and illustrative toy examples.


Citing

If you find Shapley useful in your research please consider adding the following citation:

@misc{rozemberczki2021shapley,
      title = {{The Shapley Value of Classifiers in Ensemble Games}}, 
      author = {Benedek Rozemberczki and Rik Sarkar},
      year = {2021},
      eprint = {2101.02153},
      archivePrefix = {arXiv},
      primaryClass = {cs.LG}
}

A simple example

Shapley makes solving voting games quite easy - see the accompanying tutorial. For example, this is all it takes to solve a weighted voting game with defined on the fly with permutation sampling:

import numpy as np
from shapley import PermutationSampler

W = np.random.uniform(0, 1, (1, 7))
W = W/W.sum()
q = 0.5

solver = PermutationSampler()
solver.solve_game(W, q)
shapley_values = solver.get_solution()

Methods Included

In detail, the following methods can be used.


Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets. For a quick start, check out the examples in the examples/ directory.

If you notice anything unexpected, please open an issue. If you are missing a specific method, feel free to open a feature request.


Installation

$ pip install shapley

Running tests

$ python setup.py test

Running examples

$ cd examples
$ python permutation_sampler_example.py

License

You might also like...
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Neural Ensemble Search for Performant and Calibrated Predictions
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

 An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Using Hotel Data to predict High Value And Potential VIP Guests
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Comments
  • Error in running MLE example

    Error in running MLE example

    Thank you for sharing your great work. I truly enjoyed reading it. However, I met an error when I tried the example. It seems to be fine for the MC example.

    $ python multilinear_extension_example.py RuntimeWarning: invalid value encountered in true_divide self._Phi = self._Phi / np.sum(self._Phi, axis=1).reshape(-1, 1) Traceback (most recent call last): File "multilinear_extension_example.py", line 11, in solver.solve_game(W, q) File "/lib/python3.6/site-packages/shapley/solvers/multilinear_extension.py", line 34, in solve_game self._run_sanity_check(W, self._Phi) File "/lib/python3.6/site-packages/shapley/solution_concept.py", line 28, in _run_sanity_check self._verify_distribution(Phi) File "/lib/python3.6/site-packages/shapley/solution_concept.py", line 22, in _verify_distribution assert np.sum(Phi) - Phi.shape[0] < 0.001 AssertionError

    opened by xxlya 2
Releases(v_10003)
Owner
Benedek Rozemberczki
PhD candidate at The University of Edinburgh @cdt-data-science working on machine learning and data mining related to graph structured data.
Benedek Rozemberczki
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Nafis Ahmed 1 Dec 28, 2021
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

null 4 Nov 25, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

null 54 Nov 25, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022