Behavioral Testing of Clinical NLP Models

Overview

Behavioral Testing of Clinical NLP Models

This repository contains code for testing the behavior of clinical prediction models based on patient letters. For a detailed description of the testing framework see our paper What Do You See in this Patient? Behavioral Testing of Clinical NLP Models.

From an existing test set we create test groups by altering specific tokens in the clinical note. We then analyse the change in predictions which reveals the impact of the mention on the clinical NLP model.

Usage

Install requirements: pip install -r requirements.txt

Run main.py, e.g. for diagnosis prediction test on gender, age and ethnicity:

python main.py 
    --test_set_path ./path_to_test_set
    --model_path bvanaken/CORe-clinical-diagnosis-prediction
    --task diagnosis
    --shift_keys gender,age,ethnicity
    --save_dir ./results
    --gpu False
Parameter Description
test_set_path Path to original test set file
model_path Path to model or Huggingface model hub checkpoint
task Current options: diagnosis, mortality
shift_keys Which patient characteristics to test. Current options: age, gender, ethnicity, weight, intersectional (gender + ethnicity)
save_dir Directory to save results, default: "./results"
gpu Whether to use a gpu during inference or not, default: False

Using Non-Transformer models

The framework currently focuses on testing Transformer-based models. However, it is easy to extend it to any other prediction model. To do so, simply create a new class implementing the Predictor interface and add it to the TASK_MAP in main.py.

Cite

@inproceedings{vanAken2021,
  author    = {Betty van Aken and
               Sebastian Herrmann and
               Alexander Löser},
  title     = {What Do You See in this Patient? Behavioral Testing of Clinical NLP Models},
  booktitle = {Bridging the Gap: From Machine Learning Research to Clinical Practice, 
               Research2Clinics Workshop @ NeurIPS 2021},
  year      = {2021}
}
You might also like...
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries.

 Anuvada: Interpretable Models for NLP using PyTorch
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Owner
Betty van Aken
PhD student at Beuth University of Applied Sciences in Berlin doing research in Clinical NLP & Explainability
Betty van Aken
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

null 9 Dec 28, 2021
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.5k Feb 18, 2021
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.1k Feb 14, 2021
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

?? The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 2, 2023
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022