Basics of 2D and 3D Human Pose Estimation.

Overview

Human Pose Estimation 101

If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolved, check out these articles I published on 2D Pose Estimation and 3D Pose Estimation

Table of Contents

Basics

  • Defined as the problem of localization of human joints (or) keypoints
  • A rigid body consists of joints and rigid parts. A body with strong articulation is a body with strong contortion.
  • Pose Estimation is the search for a specific pose in space of all articulated poses
  • Number of keypoints varies with dataset - LSP has 14, MPII has 16, 16 are used in Human3.6m
  • Classifed into 2D and 3D Pose Estimation
    • 2D Pose Estimation
    • Estimate a 2D pose (x,y) coordinates for each joint in pixel space from a RGB image
    • 3D Pose Estimation
    • Estimate a 3D pose (x,y,z) coordinates in metric space from a RGB image, or in previous works, data from a RGB-D sensor. (However, research in the past few years is heavily focussed on generating 3D poses from 2D images / 2D videos)

Loss

  • Most commonly used loss function - Mean Squared Error, MSE(Least Squares Loss)
  • This is a regression problem. The model will try to regress to the the correct coordinates, i.e move to the ground truth coordinatate’s in small increments. The model is trained to output continuous coordinates using a Mean Squared Error loss function

Evaluation metrics

Percentage of Correct Parts - PCP

  • A limb is considered detected and a correct part if the distance between the two predicted joint locations and the true limb joint locations is at most half of the limb length (PCP at 0.5 )
  • Measures detection rate of limbs
  • Cons - penalizes shorter limbs
  • Calculation
    • For a specific part, PCP = (No. of correct parts for entire dataset) / (No. of total parts for entire dataset)
    • Take a dataset with 10 images and 1 pose per image. Each pose has 8 parts - ( upper arm, lower arm, upper leg, lower leg ) x2
    • No of upper arms = 10 * 2 = 20
    • No of lower arms = 20
    • No of lower legs = No of upper legs = 20
    • If upper arm is detected correct for 17 out of the 20 upper arms i.e 17 ( 10 right arms and 7 left) → PCP = 17/20 = 85%
  • Higher the better

Percentage of Correct Key-points - PCK

  • Detected joint is considered correct if the distance between the predicted and the true joint is within a certain threshold (threshold varies)
  • [email protected] is when the threshold = 50% of the head bone link
  • [email protected] == Distance between predicted and true joint < 0.2 * torso diameter
  • Sometimes 150 mm is taken as the threshold
  • Head, shoulder, Elbow, Wrist, Hip, Knee, Ankle → Keypoints
  • PCK is used for 2D and 3D (PCK3D)
  • Higher the better

Percentage of Detected Joints - PDJ

  • Detected joint is considered correct if the distance between the predicted and the true joint is within a certain fraction of the torso diameter
  • Alleviates the shorter limb problem since shorter limbs have smaller torsos
  • PDJ at 0.2 → Distance between predicted and true join < 0.2 * torso diameter
  • Typically used for 2D Pose Estimation
  • Higher the better

Mean Per Joint Position Error - MPJPE

  • Per joint position error = Euclidean distance between ground truth and prediction for a joint
  • Mean per joint position error = Mean of per joint position error for all k joints (Typically, k = 16)
  • Calculated after aligning the root joints (typically the pelvis) of the estimated and groundtruth 3D pose.
  • PA MPJPE
    • Procrustes analysis MPJPE.
    • MPJPE calculated after the estimated 3D pose is aligned to the groundtruth by the Procrustes method
    • Procrustes method is simply a similarity transformation
  • Lower the better
  • Used for 3D Pose Estimation

AUC

Important Applications

  • Activity Analysis
  • Human-Computer Interaction (HCI)
  • Virtual Reality
  • Augmented Reality
  • Amazon Go presents an important domain for the application of Human Pose Estimation. Cameras track and recognize people and their actions, for which Pose Estimation is an important component. Entities relying on services that track and measure human activities rely heavily on human Pose Estimation

Informative roadmap on 2D Human Pose Estimation research

You might also like...
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

The project is an official implementation of our CVPR2019 paper
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021) Introduction This is the official code of Deep Dual Consecutive Network for Human P

Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Code for
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

Comments
  • A question about PCK threshold computation.

    A question about PCK threshold computation.

    How do we compute the torso diameter in 2d to get the threshold? Depending on the person's pose the projected torso length is different. Sorry for a basic question, but could you elaborate on that?

    opened by wolterlw 2
Owner
Sudharshan Chandra Babu
Machine Learning Engineer
Sudharshan Chandra Babu
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

null 42 Nov 24, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30 sports-related actions each, for a total of 510 action clips.

Aiden Nibali 25 Jun 20, 2021
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

null 256 Dec 28, 2022