Estimating Example Difficulty using Variance of Gradients

Overview

Estimating Example Difficulty using Variance of Gradients

This repository contains source code necessary to reproduce some of the main results in the paper:

If you use this software, please consider citing:

@article{agarwal2020estimating, 
title={Estimating Example Difficulty using Variance of Gradients},
author={Agarwal, Chirag and Hooker, Sara},
journal={arXiv preprint arXiv:2008.11600},
year={2020}
}

1. Setup

Installing software

This repository is built using a combination of TensorFlow and PyTorch. You can install the necessary libraries by pip installing the requirements text file pip install -r ./requirements_tf.txt and pip install -r ./requirements_pytorch.txt

2. Usage

Toy experiment

toy_script.py is the script for running toy dataset experiment. You can analyze the training/testing data at diffferent stages of the training, viz. Early, Middle, and Late, using the flags split and mode. The vog_cal flag enables visualizing different versions of VOG scores such as the raw score, class normalized, or the absolute class normalized scores.

Examples

Running python3 toy_script.py --split test --mode early --vog_cal normalize generates the toy dataset decision boundary figure along with the relation between the perpendicular distance of individual points from the decision boundary and the VOG scores. The respective figures are:

Left: The visualization of the toy dataset decision boundary with the testing data points. The Multiple Layer Perceptron model achieves 100% training accuracy. Right: The scatter plot between the Variance of Gradients (VoGs) for each testing data point and their perpendicular distance shows that higher scores pertain to the most challenging examples (closest to the decision boundary)

ImageNet

The main scripts for the ImageNet experiments are in the ./imagenet/ folder.

  1. Before calculating the VOG scores you would need to store the gradients of the respective images in the ./scripts/train.txt/ file using model snapshots. For demonstration purpose, we have shared the model weights of the late stage, i.e. steps 30024, 31275, and 32000. Now, for example, we want to store the gradients for the imagenet dataset (stored as /imagenet_dir/train) at snapshot 32000, we run the shell script train_get_gradients.sh like:

source train_get_gradients.sh 32000 ./imagenet/train_results/ 9 ./scripts/train.txt/

  1. For this repo, we have generated the gradients for 100 random images for the late stage training process and stored the results in ./imagenet/train_results/. To generate the error rate performance at different VOG deciles run train_visualize_grad.py using the following command. python train_visualize_grad.py

On analyzing the VOG score for a particular class (e.g. below are magpie and pop bottle) in the late training stage, we found two unique groups of images. In this work, we hypothesize that examples that a model has difficulty learning (images on the right) will exhibit higher variance in gradient updates over the course of training (. On the other hand, the gradient updates for the relatively easier examples are expected to stabilize early in training and converge to a narrow range of values.

Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest (left column) and highest (right column) VOG scores for the class magpie and pop bottle with their predicted labels below the image. Training set images with higher VOG scores (b) tend to feature zoomed-in images with atypical color schemes and vantage points.

4. Licenses

Note that the code in this repository is licensed under MIT License, but, the pre-trained condition models used by the code have their own licenses. Please carefully check them before use.

5. Questions?

If you have questions/suggestions, please feel free to email or create github issues.

You might also like...
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Comments
  • An unexpected result when using the pre-softmax layer instead of the softmax layer

    An unexpected result when using the pre-softmax layer instead of the softmax layer

    Thank you for sharing the amazing work!

    When I run the toy example, it runs perfectly fine and shows the exact same result you uploaded in this repo. Below are the command and the result.

    • command
      $ python3 toy_script.py --split test --mode early --vog_cal normalize
      
    • result image

    However, I found that the code uses the gradient of the softmax layer w.r.t. the input, which differs from the paper in that the pre-softmax layer is used in the paper. So I changed a single line of toy_script.py as below and got a somewhat weird result when I run the code again.

    • change Screenshot from 2022-06-29 20-53-18
    • result image

    What did I miss here?

    opened by hobincar 4
  • Bump pillow from 7.1.2 to 8.1.1

    Bump pillow from 7.1.2 to 8.1.1

    Bumps pillow from 7.1.2 to 8.1.1.

    Release notes

    Sourced from pillow's releases.

    8.1.1

    https://pillow.readthedocs.io/en/stable/releasenotes/8.1.1.html

    8.1.0

    https://pillow.readthedocs.io/en/stable/releasenotes/8.1.0.html

    Changes

    Dependencies

    Deprecations

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    8.1.1 (2021-03-01)

    • Use more specific regex chars to prevent ReDoS. CVE-2021-25292 [hugovk]

    • Fix OOB Read in TiffDecode.c, and check the tile validity before reading. CVE-2021-25291 [wiredfool]

    • Fix negative size read in TiffDecode.c. CVE-2021-25290 [wiredfool]

    • Fix OOB read in SgiRleDecode.c. CVE-2021-25293 [wiredfool]

    • Incorrect error code checking in TiffDecode.c. CVE-2021-25289 [wiredfool]

    • PyModule_AddObject fix for Python 3.10 #5194 [radarhere]

    8.1.0 (2021-01-02)

    • Fix TIFF OOB Write error. CVE-2020-35654 #5175 [wiredfool]

    • Fix for Read Overflow in PCX Decoding. CVE-2020-35653 #5174 [wiredfool, radarhere]

    • Fix for SGI Decode buffer overrun. CVE-2020-35655 #5173 [wiredfool, radarhere]

    • Fix OOB Read when saving GIF of xsize=1 #5149 [wiredfool]

    • Makefile updates #5159 [wiredfool, radarhere]

    • Add support for PySide6 #5161 [hugovk]

    • Use disposal settings from previous frame in APNG #5126 [radarhere]

    • Added exception explaining that repr_png saves to PNG #5139 [radarhere]

    • Use previous disposal method in GIF load_end #5125 [radarhere]

    ... (truncated)

    Commits
    • 741d874 8.1.1 version bump
    • 179cd1c Added 8.1.1 release notes to index
    • 7d29665 Update CHANGES.rst [ci skip]
    • d25036f Credits
    • 973a4c3 Release notes for 8.1.1
    • 521dab9 Use more specific regex chars to prevent ReDoS
    • 8b8076b Fix for CVE-2021-25291
    • e25be1e Fix negative size read in TiffDecode.c
    • f891baa Fix OOB read in SgiRleDecode.c
    • cbfdde7 Incorrect error code checking in TiffDecode.c
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump pygments from 2.6.1 to 2.7.4

    Bump pygments from 2.6.1 to 2.7.4

    Bumps pygments from 2.6.1 to 2.7.4.

    Release notes

    Sourced from pygments's releases.

    2.7.4

    • Updated lexers:

      • Apache configurations: Improve handling of malformed tags (#1656)

      • CSS: Add support for variables (#1633, #1666)

      • Crystal (#1650, #1670)

      • Coq (#1648)

      • Fortran: Add missing keywords (#1635, #1665)

      • Ini (#1624)

      • JavaScript and variants (#1647 -- missing regex flags, #1651)

      • Markdown (#1623, #1617)

      • Shell

        • Lex trailing whitespace as part of the prompt (#1645)
        • Add missing in keyword (#1652)
      • SQL - Fix keywords (#1668)

      • Typescript: Fix incorrect punctuation handling (#1510, #1511)

    • Fix infinite loop in SML lexer (#1625)

    • Fix backtracking string regexes in JavaScript/TypeScript, Modula2 and many other lexers (#1637)

    • Limit recursion with nesting Ruby heredocs (#1638)

    • Fix a few inefficient regexes for guessing lexers

    • Fix the raw token lexer handling of Unicode (#1616)

    • Revert a private API change in the HTML formatter (#1655) -- please note that private APIs remain subject to change!

    • Fix several exponential/cubic-complexity regexes found by Ben Caller/Doyensec (#1675)

    • Fix incorrect MATLAB example (#1582)

    Thanks to Google's OSS-Fuzz project for finding many of these bugs.

    2.7.3

    ... (truncated)

    Changelog

    Sourced from pygments's changelog.

    Version 2.7.4

    (released January 12, 2021)

    • Updated lexers:

      • Apache configurations: Improve handling of malformed tags (#1656)

      • CSS: Add support for variables (#1633, #1666)

      • Crystal (#1650, #1670)

      • Coq (#1648)

      • Fortran: Add missing keywords (#1635, #1665)

      • Ini (#1624)

      • JavaScript and variants (#1647 -- missing regex flags, #1651)

      • Markdown (#1623, #1617)

      • Shell

        • Lex trailing whitespace as part of the prompt (#1645)
        • Add missing in keyword (#1652)
      • SQL - Fix keywords (#1668)

      • Typescript: Fix incorrect punctuation handling (#1510, #1511)

    • Fix infinite loop in SML lexer (#1625)

    • Fix backtracking string regexes in JavaScript/TypeScript, Modula2 and many other lexers (#1637)

    • Limit recursion with nesting Ruby heredocs (#1638)

    • Fix a few inefficient regexes for guessing lexers

    • Fix the raw token lexer handling of Unicode (#1616)

    • Revert a private API change in the HTML formatter (#1655) -- please note that private APIs remain subject to change!

    • Fix several exponential/cubic-complexity regexes found by Ben Caller/Doyensec (#1675)

    • Fix incorrect MATLAB example (#1582)

    Thanks to Google's OSS-Fuzz project for finding many of these bugs.

    Version 2.7.3

    (released December 6, 2020)

    ... (truncated)

    Commits
    • 4d555d0 Bump version to 2.7.4.
    • fc3b05d Update CHANGES.
    • ad21935 Revert "Added dracula theme style (#1636)"
    • e411506 Prepare for 2.7.4 release.
    • 275e34d doc: remove Perl 6 ref
    • 2e7e8c4 Fix several exponential/cubic complexity regexes found by Ben Caller/Doyensec
    • eb39c43 xquery: fix pop from empty stack
    • 2738778 fix coding style in test_analyzer_lexer
    • 02e0f09 Added 'ERROR STOP' to fortran.py keywords. (#1665)
    • c83fe48 support added for css variables (#1633)
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Owner
Chirag Agarwal
Researching the Unknown
Chirag Agarwal
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 4, 2023
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 4, 2021
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

null 2 Apr 14, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 1, 2023
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022