VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains.

Overview

VADER-Sentiment-Analysis

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media. It is fully open-sourced under the [MIT License] (we sincerely appreciate all attributions and readily accept most contributions, but please don't hold us liable).

Features and Updates

Many thanks to George Berry, Ewan Klein, Pierpaolo Pantone for key contributions to make VADER better. The new updates includes capabilities regarding:

  1. Refactoring for Python 3 compatibility, improved modularity, and incorporation into [NLTK] ...many thanks to Ewan & Pierpaolo.

  2. Restructuring for much improved speed/performance, reducing the time complexity from something like O(N^4) to O(N)...many thanks to George.

  3. Simplified pip install and better support for vaderSentiment module and component import. (Dependency on vader_lexicon.txt file now uses automated file location discovery so you don't need to manually designate its location in the code, or copy the file into your executing code's directory.)

  4. More complete demo in the __main__ for vaderSentiment.py. The demo has:

    • examples of typical use cases for sentiment analysis, including proper handling of sentences with:

      • typical negations (e.g., "not good")
      • use of contractions as negations (e.g., "wasn't very good")
      • conventional use of punctuation to signal increased sentiment intensity (e.g., "Good!!!")
      • conventional use of word-shape to signal emphasis (e.g., using ALL CAPS for words/phrases)
      • using degree modifiers to alter sentiment intensity (e.g., intensity boosters such as "very" and intensity dampeners such as "kind of")
      • understanding many sentiment-laden slang words (e.g., 'sux')
      • understanding many sentiment-laden slang words as modifiers such as 'uber' or 'friggin' or 'kinda'
      • understanding many sentiment-laden emoticons such as :) and :D
      • translating utf-8 encoded emojis such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜
      • understanding sentiment-laden initialisms and acronyms (for example: 'lol')
    • more examples of tricky sentences that confuse other sentiment analysis tools

    • example for how VADER can work in conjunction with NLTK to do sentiment analysis on longer texts...i.e., decomposing paragraphs, articles/reports/publications, or novels into sentence-level analyses

    • examples of a concept for assessing the sentiment of images, video, or other tagged multimedia content

    • if you have access to the Internet, the demo has an example of how VADER can work with analyzing sentiment of texts in other languages (non-English text sentences).

Introduction

This README file describes the dataset of the paper:

VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text
(by C.J. Hutto and Eric Gilbert)
Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
For questions, please contact:
C.J. Hutto
Georgia Institute of Technology, Atlanta, GA 30032
cjhutto [at] gatech [dot] edu

Citation Information

If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example:

Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.

Installation

There are a couple of ways to install and use VADER sentiment:

  1. The simplest is to use the command line to do an installation from [PyPI] using pip, e.g.,
    > pip install vaderSentiment
  2. Or, you might already have VADER and simply need to upgrade to the latest version, e.g.,
    > pip install --upgrade vaderSentiment
  3. You could also clone this [GitHub repository]
  4. You could download and unzip the [full master branch zip file]

In addition to the VADER sentiment analysis Python module, options 3 or 4 will also download all the additional resources and datasets (described below).

Resources and Dataset Descriptions

The package here includes PRIMARY RESOURCES (items 1-3) as well as additional DATASETS AND TESTING RESOURCES (items 4-12):

  1. vader_icwsm2014_final.pdf

    The original paper for the data set, see citation information (above).

  2. vader_lexicon.txt
    FORMAT: the file is tab delimited with TOKEN, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-HUMAN-SENTIMENT-RATINGS

    NOTE: The current algorithm makes immediate use of the first two elements (token and mean valence). The final two elements (SD and raw ratings) are provided for rigor. For example, if you want to follow the same rigorous process that we used for the study, you should find 10 independent humans to evaluate/rate each new token you want to add to the lexicon, make sure the standard deviation doesn't exceed 2.5, and take the average rating for the valence. This will keep the file consistent.

    DESCRIPTION: Empirically validated by multiple independent human judges, VADER incorporates a "gold-standard" sentiment lexicon that is especially attuned to microblog-like contexts.

    The VADER sentiment lexicon is sensitive both the polarity and the intensity of sentiments expressed in social media contexts, and is also generally applicable to sentiment analysis in other domains.

    Sentiment ratings from 10 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability). Over 9,000 token features were rated on a scale from "[โ€“4] Extremely Negative" to "[4] Extremely Positive", with allowance for "[0] Neutral (or Neither, N/A)". We kept every lexical feature that had a non-zero mean rating, and whose standard deviation was less than 2.5 as determined by the aggregate of those ten independent raters. This left us with just over 7,500 lexical features with validated valence scores that indicated both the sentiment polarity (positive/negative), and the sentiment intensity on a scale from โ€“4 to +4. For example, the word "okay" has a positive valence of 0.9, "good" is 1.9, and "great" is 3.1, whereas "horrible" is โ€“2.5, the frowning emoticon :( is โ€“2.2, and "sucks" and it's slang derivative "sux" are both โ€“1.5.

    Manually creating (much less, validating) a comprehensive sentiment lexicon is a labor intensive and sometimes error prone process, so it is no wonder that many opinion mining researchers and practitioners rely so heavily on existing lexicons as primary resources. We are pleased to offer ours as a new resource. We began by constructing a list inspired by examining existing well-established sentiment word-banks (LIWC, ANEW, and GI). To this, we next incorporate numerous lexical features common to sentiment expression in microblogs, including:

    • a full list of Western-style emoticons, for example, :-) denotes a smiley face and generally indicates positive sentiment
    • sentiment-related acronyms and initialisms (e.g., LOL and WTF are both examples of sentiment-laden initialisms)
    • commonly used slang with sentiment value (e.g., nah, meh and giggly).

    We empirically confirmed the general applicability of each feature candidate to sentiment expressions using a wisdom-of-the-crowd (WotC) approach (Surowiecki, 2004) to acquire a valid point estimate for the sentiment valence (polarity & intensity) of each context-free candidate feature.

  3. vaderSentiment.py

    The Python code for the rule-based sentiment analysis engine. Implements the grammatical and syntactical rules described in the paper, incorporating empirically derived quantifications for the impact of each rule on the perceived intensity of sentiment in sentence-level text. Importantly, these heuristics go beyond what would normally be captured in a typical bag-of-words model. They incorporate word-order sensitive relationships between terms. For example, degree modifiers (also called intensifiers, booster words, or degree adverbs) impact sentiment intensity by either increasing or decreasing the intensity. Consider these examples:

    1. "The service here is extremely good"
    2. "The service here is good"
    3. "The service here is marginally good"

    From Table 3 in the paper, we see that for 95% of the data, using a degree modifier increases the positive sentiment intensity of example (a) by 0.227 to 0.36, with a mean difference of 0.293 on a rating scale from 1 to 4. Likewise, example (c) reduces the perceived sentiment intensity by 0.293, on average.

  4. tweets_GroundTruth.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TWEET-TEXT

    DESCRIPTION: includes "tweet-like" text as inspired by 4,000 tweets pulled from Twitterโ€™s public timeline, plus 200 completely contrived tweet-like texts intended to specifically test syntactical and grammatical conventions of conveying differences in sentiment intensity. The "tweet-like" texts incorporate a fictitious username (@anonymous) in places where a username might typically appear, along with a fake URL (http://url_removed) in places where a URL might typically appear, as inspired by the original tweets. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'tweets_anonDataRatings.txt' (described below).

  5. tweets_anonDataRatings.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS

    DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).

  6. nytEditorialSnippets_GroundTruth.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TEXT-SNIPPET

    DESCRIPTION: includes 5,190 sentence-level snippets from 500 New York Times opinion news editorials/articles; we used the NLTK tokenizer to segment the articles into sentence phrases, and added sentiment intensity ratings. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'nytEditorialSnippets_anonDataRatings.txt' (described below).

  7. nytEditorialSnippets_anonDataRatings.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS

    DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).

  8. movieReviewSnippets_GroundTruth.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TEXT-SNIPPET

    DESCRIPTION: includes 10,605 sentence-level snippets from rotten.tomatoes.com. The snippets were derived from an original set of 2000 movie reviews (1000 positive and 1000 negative) in Pang & Lee (2004); we used the NLTK tokenizer to segment the reviews into sentence phrases, and added sentiment intensity ratings. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'movieReviewSnippets_anonDataRatings.txt' (described below).

  9. movieReviewSnippets_anonDataRatings.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS

    DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).

  10. amazonReviewSnippets_GroundTruth.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, and TEXT-SNIPPET

    DESCRIPTION: includes 3,708 sentence-level snippets from 309 customer reviews on 5 different products. The reviews were originally used in Hu & Liu (2004); we added sentiment intensity ratings. The ID and MEAN-SENTIMENT-RATING correspond to the raw sentiment rating data provided in 'amazonReviewSnippets_anonDataRatings.txt' (described below).

  11. amazonReviewSnippets_anonDataRatings.txt

    FORMAT: the file is tab delimited with ID, MEAN-SENTIMENT-RATING, STANDARD DEVIATION, and RAW-SENTIMENT-RATINGS

    DESCRIPTION: Sentiment ratings from a minimum of 20 independent human raters (all pre-screened, trained, and quality checked for optimal inter-rater reliability).

  12. Comp.Social website with more papers/research:

    [Comp.Social](http://comp.social.gatech.edu/papers/)

Python Demo and Code Examples

Demo, including example of non-English text translations

For a more complete demo, point your terminal to vader's install directory (e.g., if you installed using pip, it might be \Python3x\lib\site-packages\vaderSentiment), and then run python vaderSentiment.py. (Be sure you are set to handle UTF-8 encoding in your terminal or IDE... there are also additional library/package requirements such as NLTK and requests to help demonstrate some common real world needs/desired uses).

The demo has more examples of tricky sentences that confuse other sentiment analysis tools. It also demonstrates how VADER can work in conjunction with NLTK to do sentiment analysis on longer texts...i.e., decomposing paragraphs, articles/reports/publications, or novels into sentence-level analysis. It also demonstrates a concept for assessing the sentiment of images, video, or other tagged multimedia content.

If you have access to the Internet, the demo will also show how VADER can work with analyzing sentiment of non-English text sentences. Please be aware that VADER does not inherently provide it's own translation. The use of "My Memory Translation Service" from MY MEMORY NET (see: http://mymemory.translated.net) is part of the demonstration showing (one way) for how to use VADER on non-English text. (Please note the usage limits for number of requests: http://mymemory.translated.net/doc/usagelimits.php)

Code Examples

    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
    #note: depending on how you installed (e.g., using source code download versus pip install), you may need to import like this:
    #from vaderSentiment import SentimentIntensityAnalyzer

# --- examples -------
sentences = ["VADER is smart, handsome, and funny.",  # positive sentence example
             "VADER is smart, handsome, and funny!",  # punctuation emphasis handled correctly (sentiment intensity adjusted)
             "VADER is very smart, handsome, and funny.", # booster words handled correctly (sentiment intensity adjusted)
             "VADER is VERY SMART, handsome, and FUNNY.",  # emphasis for ALLCAPS handled
             "VADER is VERY SMART, handsome, and FUNNY!!!", # combination of signals - VADER appropriately adjusts intensity
             "VADER is VERY SMART, uber handsome, and FRIGGIN FUNNY!!!", # booster words & punctuation make this close to ceiling for score
             "VADER is not smart, handsome, nor funny.",  # negation sentence example
             "The book was good.",  # positive sentence
             "At least it isn't a horrible book.",  # negated negative sentence with contraction
             "The book was only kind of good.", # qualified positive sentence is handled correctly (intensity adjusted)
             "The plot was good, but the characters are uncompelling and the dialog is not great.", # mixed negation sentence
             "Today SUX!",  # negative slang with capitalization emphasis
             "Today only kinda sux! But I'll get by, lol", # mixed sentiment example with slang and constrastive conjunction "but"
             "Make sure you :) or :D today!",  # emoticons handled
             "Catch utf-8 emoji such as such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜",  # emojis handled
             "Not bad at all"  # Capitalized negation
             ]

analyzer = SentimentIntensityAnalyzer()
for sentence in sentences:
    vs = analyzer.polarity_scores(sentence)
    print("{:-<65} {}".format(sentence, str(vs)))

Again, for a more complete demo, go to the install directory and run python vaderSentiment.py. (Be sure you are set to handle UTF-8 encoding in your terminal or IDE.)

Output for the above example code

VADER is smart, handsome, and funny.----------------------------- {'pos': 0.746, 'compound': 0.8316, 'neu': 0.254, 'neg': 0.0}
VADER is smart, handsome, and funny!----------------------------- {'pos': 0.752, 'compound': 0.8439, 'neu': 0.248, 'neg': 0.0}
VADER is very smart, handsome, and funny.------------------------ {'pos': 0.701, 'compound': 0.8545, 'neu': 0.299, 'neg': 0.0}
VADER is VERY SMART, handsome, and FUNNY.------------------------ {'pos': 0.754, 'compound': 0.9227, 'neu': 0.246, 'neg': 0.0}
VADER is VERY SMART, handsome, and FUNNY!!!---------------------- {'pos': 0.767, 'compound': 0.9342, 'neu': 0.233, 'neg': 0.0}
VADER is VERY SMART, uber handsome, and FRIGGIN FUNNY!!!--------- {'pos': 0.706, 'compound': 0.9469, 'neu': 0.294, 'neg': 0.0}
VADER is not smart, handsome, nor funny.------------------------- {'pos': 0.0, 'compound': -0.7424, 'neu': 0.354, 'neg': 0.646}
The book was good.----------------------------------------------- {'pos': 0.492, 'compound': 0.4404, 'neu': 0.508, 'neg': 0.0}
At least it isn't a horrible book.------------------------------- {'pos': 0.363, 'compound': 0.431, 'neu': 0.637, 'neg': 0.0}
The book was only kind of good.---------------------------------- {'pos': 0.303, 'compound': 0.3832, 'neu': 0.697, 'neg': 0.0}
The plot was good, but the characters are uncompelling and the dialog is not great. {'pos': 0.094, 'compound': -0.7042, 'neu': 0.579, 'neg': 0.327}
Today SUX!------------------------------------------------------- {'pos': 0.0, 'compound': -0.5461, 'neu': 0.221, 'neg': 0.779}
Today only kinda sux! But I'll get by, lol----------------------- {'pos': 0.317, 'compound': 0.5249, 'neu': 0.556, 'neg': 0.127}
Make sure you :) or :D today!------------------------------------ {'pos': 0.706, 'compound': 0.8633, 'neu': 0.294, 'neg': 0.0}
Catch utf-8 emoji such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜-------------------- {'pos': 0.279, 'compound': 0.7003, 'neu': 0.721, 'neg': 0.0}
Not bad at all--------------------------------------------------- {'pos': 0.487, 'compound': 0.431, 'neu': 0.513, 'neg': 0.0}

About the Scoring

  • The compound score is computed by summing the valence scores of each word in the lexicon, adjusted according to the rules, and then normalized to be between -1 (most extreme negative) and +1 (most extreme positive). This is the most useful metric if you want a single unidimensional measure of sentiment for a given sentence. Calling it a 'normalized, weighted composite score' is accurate.

    It is also useful for researchers who would like to set standardized thresholds for classifying sentences as either positive, neutral, or negative. Typical threshold values (used in the literature cited on this page) are:

  1. positive sentiment: compound score >= 0.05
  2. neutral sentiment: (compound score > -0.05) and (compound score < 0.05)
  3. negative sentiment: compound score <= -0.05
  • The pos, neu, and neg scores are ratios for proportions of text that fall in each category (so these should all add up to be 1... or close to it with float operation). These are the most useful metrics if you want multidimensional measures of sentiment for a given sentence.

Ports to Other Programming Languages

Feel free to let me know about ports of VADER Sentiment to other programming languages. So far, I know about these helpful ports:

  1. Java
    VaderSentimentJava by apanimesh061
  2. JavaScript
    vaderSentiment-js by nimaeskandary
  3. PHP
    php-vadersentiment by abusby
  4. Scala
    Sentiment by ziyasal
  5. C#
    vadersharp by codingupastorm Jordan Andrews
  6. Rust
    vader-sentiment-rust by ckw017
  7. Go
    GoVader by jonreiter Jon Reiter
  8. R
    R Vader by Katie Roehrick
Comments
  • ImportError: cannot import name sentiment

    ImportError: cannot import name sentiment

    I installed vaderSentiment with pip and have ensured it is in the correct file, un- and re-installed it, attempted to upgrade pip, attempted to change the permissions for the files and am still having difficulty using this library. Error below:

    Traceback (most recent call last): File "search_twitter.py", line 1, in from vaderSentiment import sentiment as vaderSentiment ImportError: cannot import name sentiment

    Any help as soon as possible would be greatly appreciated as my project is due on Tuesday. Thank you very much, Jon

    opened by jatkins23 28
  • "To die for" misinterpreted

    I have found this basic common expression which is misinterpreted by Vader:

    To die for.-------------- {'neg': 0.661, 'neu': 0.339, 'pos': 0.0, 'compound': -0.5994}

    Could you consider adding a new rule for that?

    opened by fcpenha 7
  • Negation interpretation is very poor

    Negation interpretation is very poor

    I will be looking for a solution to this but right now, things like the following:

    no problems ever Everything has been smooth. No problems or complaints. No problem as of yet Doing just fine no problems All good. No complaints. No problem everything good Very satisfied. No bad experiences.

    are all being categorized as ~60% negative or more.

    and yet things like this:

    New website is HORRIBLE

    Has 53% negativity. For capitalized descriptions like "HORRIBLE", I would have expected much more accurate results, it seems like the same logic that is overestimating the negativity of words like "no" and "problem" is totally ignoring less general words like "horrible". This is not good at all.

    I bring this up not in hopes it would get fixed, I think it's fundamentally a problem with the approach this solution takes. I bring this up in case anyone was wondering if they should use this in a production scenario. You shouldn't. Especially not for customer support or CXM-related jobs. There is almost no common sense context awareness in VADER and worse, it misses on obvious adjectives which have little ironic or contradictory uses.

    opened by DylanAlloy 6
  • syntax error

    syntax error

    successful import platform : windows 7(x64) python version : 3.5.1

    Traceback (most recent call last): File "C:\Users\user\Desktop\sentiment\sentiment2.py", line 2, in from vaderSentiment.vaderSentiment import sentiment as vaderSentiment File "", line 969, in _find_and_load File "", line 954, in _find_and_load_unlocked File "", line 896, in _find_spec File "", line 1136, in find_spec File "", line 1112, in _get_spec File "", line 1093, in _legacy_get_spec File "", line 444, in spec_from_loader File "", line 530, in spec_from_file_location File "C:\Python\Python35\lib\site-packages\vadersentiment-0.5-py3.5.egg\vaderSentiment\vaderSentiment.py", line 23 return dict(map(lambda (w, m): (w, float(m)), [wmsr.strip().split('\t')[0:2] for wmsr in open(f) ])) ^ SyntaxError: invalid syntax

    opened by somenathmaji 6
  • Not predicting sentiment of emoticons correctly

    Not predicting sentiment of emoticons correctly

    It is not predicting inconsistent results on emoticons.For instance, when I am passing this as '๐Ÿ™‚' an argument, it is correctly predicting the outcome but on using same emoticons multiple times '๐Ÿ™‚๐Ÿ™‚', it is giving neutral results.Similarly ,the same issue is arising in different cases of other emoji and sometimes ,it is not even detecting the single emoji too.

    opened by Rishav09 5
  • TypeError: 'encoding' is an invalid keyword argument for this function

    TypeError: 'encoding' is an invalid keyword argument for this function

    Im getting this error while compiling SentimentIntensityAnalyzer()

    ErrorLog: venv/local/lib/python2.7/site-packages/vaderSentiment/vaderSentiment.py", line 212, in init with open(lexicon_full_filepath, encoding='utf-8') as f: TypeError: 'encoding' is an invalid keyword argument for this function

    opened by esitharth 5
  • UnicodeDecodeError when calling SentimentIntensityAnalyzer

    UnicodeDecodeError when calling SentimentIntensityAnalyzer

    Hi all

    I've just been trying to learn how to use the SentimentIntensityAnalyzer() and I've come up with the problem where:

    analyzer = SentimentIntensityAnalyzer()
     ---------------------------------------------------------------------------
    UnicodeDecodeError                        Traceback (most recent call last)
    <ipython-input-31-6c626c4ef428> in <module>()
    ----> 1 analyzer = SentimentIntensityAnalyzer()
          2 analyzer.polarity_score(line_first)
    
    /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site
    packages/nltk/sentiment/vader.pyc in __init__(self, lexicon_file)
        200     def __init__(self, lexicon_file="sentiment/vader_lexicon.zip/vader_lexicon/vader_lexicon.txt"):
        201         self.lexicon_file = nltk.data.load(lexicon_file)
    --> 202         self.lexicon = self.make_lex_dict()
        203 
        204     def make_lex_dict(self):
    
    /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/nltk/sentiment/vader.pyc in make_lex_dict(self)
        208         lex_dict = {}
        209         for line in self.lexicon_file.split('\n'):
    --> 210             (word, measure) = line.strip().split('\t')[0:2]
        211             lex_dict[word] = float(measure)
        212         return lex_dict
    
    /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/codecs.pyc in next(self)
        697 
        698         """ Return the next decoded line from the input stream."""
    --> 699         return self.reader.next()
        700 
        701     def __iter__(self):
    
    /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/codecs.pyc in next(self)
        628 
        629         """ Return the next decoded line from the input stream."""
    --> 630         line = self.readline()
        631         if line:
        632             return line
    
    /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/codecs.pyc in readline(self, size, keepends)
        543         # If size is given, we call read() only once
        544         while True:
    --> 545             data = self.read(readsize, firstline=True)
        546             if data:
        547                 # If we're at a "\r" read one extra character (which might
    
    /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/codecs.pyc in read(self, size, chars, firstline)
        490             data = self.bytebuffer + newdata
        491             try:
    --> 492                 newchars, decodedbytes = self.decode(data, self.errors)
        493             except UnicodeDecodeError, exc:
        494                 if firstline:
    
    UnicodeDecodeError: 'utf8' codec can't decode byte 0xde in position 0: invalid continuation byte
    

    I've read the thread with a similar issue however, I dont quite understand where to add the 'u' to make the string unicode. I've only did: analyzer = SentimentIntensityAnalyzer()

    can someone help me?

    opened by aWildRiceHasAppeared 5
  • Error message..

    Error message..

    When I try the sample code, I get the following error message. How should I fix it? Python 3.5.0 on Mac.

    Traceback (most recent call last): File "vader_sentiment.py", line 3, in from vaderSentiment.vaderSentiment import sentiment as vaderSentiment File "/Users/sungmoon/.pyenv/versions/3.5.0a4/lib/python3.5/site-packages/vaderSentiment/vaderSentiment.py", line 23 return dict(map(lambda (w, m): (w, float(m)), [wmsr.strip().split('\t')[0:2] for wmsr in open(f) ])) ^ SyntaxError: invalid syntax

    opened by sungmoonc 5
  • Codec Issue

    Codec Issue

    Hi @cjhutto

    When I run the code from the NLTK tutorial - http://www.nltk.org/howto/sentiment.html - about using Vader I get the error below. I worked out that I had to move the vader_lexicon.txt file into my NLTK sentiment folder, but that didn't solve this Codec problem.

    Have run the code with both python 2 and 3.

    Any ideas what I can do?

    UnicodeDecodeError                        Traceback (most recent call last)
    <ipython-input-4-76d3725b79f2> in <module>()
         57 sentences.extend(tricky_sentences)
         58 
    ---> 59 sid = SentimentIntensityAnalyzer()
         60 
         61 for sentence in sentences:
    
    //anaconda/lib/python3.5/site-packages/nltk/sentiment/vader.py in __init__(self, lexicon_file)
        200     def __init__(self, lexicon_file="vader_lexicon.txt"):
        201         self.lexicon_file = os.path.join(os.path.dirname(__file__), lexicon_file)
    --> 202         self.lexicon = self.make_lex_dict()
        203 
        204     def make_lex_dict(self):
    
    //anaconda/lib/python3.5/site-packages/nltk/sentiment/vader.py in make_lex_dict(self)
        208         lex_dict = {}
        209         with codecs.open(self.lexicon_file, encoding='utf8') as infile:
    --> 210             for line in infile:
        211                 (word, measure) = line.strip().split('\t')[0:2]
        212                 lex_dict[word] = float(measure)
    
    //anaconda/lib/python3.5/codecs.py in __next__(self)
        709 
        710         """ Return the next decoded line from the input stream."""
    --> 711         return next(self.reader)
        712 
        713     def __iter__(self):
    
    //anaconda/lib/python3.5/codecs.py in __next__(self)
        640 
        641         """ Return the next decoded line from the input stream."""
    --> 642         line = self.readline()
        643         if line:
        644             return line
    
    //anaconda/lib/python3.5/codecs.py in readline(self, size, keepends)
        553         # If size is given, we call read() only once
        554         while True:
    --> 555             data = self.read(readsize, firstline=True)
        556             if data:
        557                 # If we're at a "\r" read one extra character (which might
    
    //anaconda/lib/python3.5/codecs.py in read(self, size, chars, firstline)
        499                 break
        500             try:
    --> 501                 newchars, decodedbytes = self.decode(data, self.errors)
        502             except UnicodeDecodeError as exc:
        503                 if firstline:
    
    UnicodeDecodeError: 'utf-8' codec can't decode byte 0xde in position 0: invalid continuation byte
    
    opened by jd155 5
  • incorrect sentiment due to

    incorrect sentiment due to "!"

    I tried the following examples:

    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer analyser = SentimentIntensityAnalyzer()

    analyser.polarity_scores("This is so bad") {'compound': -0.6696, 'neg': 0.6, 'neu': 0.4, 'pos': 0.0} -- Correct sentiment

    But when i add 4 excamations ("!!!!"), the sentence comes out as Neutral.

    analyser.polarity_scores("This is so bad!!!!!") {'compound': 0.0, 'neg': 0.0, 'neu': 1.0, 'pos': 0.0}

    Addition of multiple exclamations has created problems in this case. I tested for upto 6 exclamations & the breaking point seems to be 4. The sentiment works well till 3 exclamations in the sentence (atleast for this particular example)

    Can someone help me with this?

    opened by SundareshPrasanna 4
  • 'encoding' is an invalid keyword argument for this function

    'encoding' is an invalid keyword argument for this function

    Hello,

    I am trying to use vaderSentiment with Python 2.7.12 but it's giving me this error, line: https://github.com/cjhutto/vaderSentiment/blob/master/vaderSentiment/vaderSentiment.py#L212

    Does vaderSentiment support python 2? Thank you.

    opened by zHaytam 4
  • `SPECIAL_CASES` do not work

    `SPECIAL_CASES` do not work

    For example, the phrase "kiss of death" from the SPECIAL_CASES dictionary has assigned the value -1.5. Therefore, I would suppose that whole this phrase should have got negative sentiment, unlike the phrases "kiss" and "death" separately, which are positive and negative, respectively. But the code behaves strangely:

    • for a trivial one-word sentence "kiss", I get 'compound': -0.4215, which is correct since "kiss" has positive sentiment,

    • for "death", I get 'compound': -0.5994, which is correct since "death" has very negative sentiment,

    • for a longer sentence "kiss and death", I get 'compound': -0.2732, which is correct too, since the very negative "death" is mitigated by slightly positive "kiss".

    • But for the sentence "kiss of death", I get 'compound': -0.2732 too, which seems to me incorrect since, according to the SPECIAL_CASES dictionary, the phrase "kiss of death" per se should have got entirely negative sentiment.

    But what is even more strange is that,

    • for the more longer phrase "it was his kiss of death" I get 'compound': -0.6124 which seems correct so long as
    • I got the 'compound': -0.6124 for the shorter phrase "it was kiss of death"

    Isn't there a bug in the tri-gram heuristic?

    opened by mchlandel 0
  • VADER can't parse the word 'bad ass'?

    VADER can't parse the word 'bad ass'?

    I am running a sentiment analysis on a large corpus of tweets in R. VADER successfully returned sentiment scores for all but five tweets, which returned 'ERROR' in the word scores field. Upon inspection of these tweets, I noticed that they all contained the word 'bad ass'. When replacing 'bad ass' with 'badass', sentiment scores are successfully returned. It seems like this is a bug?

    opened by letitburn00 2
  • Total dataset is decreasing after processed by VADER

    Total dataset is decreasing after processed by VADER

    Hi, so i'm analysing tweet by VADER. The total tweet before processing by VADER is 281.175 tweets. However, after processed by VADER the tweet is decreasing to 280.184. Why this could be?

    opened by puputrizqiyah 0
  • Download additional DATASETS AND TESTING RESOURCES mentioned in README

    Download additional DATASETS AND TESTING RESOURCES mentioned in README

    From where can I download the additional DATASETS AND TESTING RESOURCES (items 4-12): mentioned in the README file? https://github.com/cjhutto/vaderSentiment#resources-and-dataset-descriptions image I tried to download the resources using nltk.download('name') but it didn't work the mentioned file names are not there in NLTK Corpura (https://www.nltk.org/nltk_data/)

    I am trying to download:

    1. tweets_anonDataRatings.txt,
    2. amazonReviewSnippets_anonDataRatings.txt, etc

    Can someone help me with this?

    opened by Deepankar-98 3
  • incorrect result while running on large dataset

    incorrect result while running on large dataset

    Hello,

    I am trying your tools and I experienced a weird bug. I really appreciate it if you can share your thought regarding this issue with me. I have a dataset of let's say 1000 instances(Some are positive, some negative, and the rest neutral). When I run the tools on the csv file only a portion of each category will be labeled correctly! For example, "Great place" will be labeled positive but "GREAT!" will be labeled Neutral. And if I remove the "Great place" instance from the dataset then "Great" will be labeled positive!!!!

    So, I have tried different scenarios to find the bug and the only conclusion I could make is that it does not work when the number of samples increases. But I don't get why??

    I tried another scenario as well. I kept the code run on top of the CSV file and have the result saved on the CSV file. Then, I pass just "GREAT!" to the model right after finishing labeling of CSV file. It labeled it as neutral again!! (If I pass "GREAT!" before running the model on the csv file then it label it as "Positive") which kinda confirmed what I said earlier.

    Could you please share with me what could be the reason? The code seems very straightforward I don't know why this is happening?

    Thanks in advance @cjhutto

    opened by un-lock-me 1
Releases(0.5)
Owner
C.J. Hutto
C.J. Hutto
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 1, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

PocketSphinx 5prealpha This is PocketSphinx, one of Carnegie Mellon University's open source large vocabulary, speaker-independent continuous speech r

null 3.2k Dec 28, 2022
๐Ÿ๐Ÿ’ฏpySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 6, 2023
๐Ÿ๐Ÿ’ฏpySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 277 Feb 18, 2021
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

null 14 Jan 3, 2023
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 3, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

null 297 Dec 29, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 8, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 1, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
Sentence boundary disambiguation tool for Japanese texts (ๆ—ฅๆœฌ่ชžๆ–‡ๅขƒ็•Œๅˆคๅฎšๅ™จ)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e 'ๅฎฟใ‚’ไบˆ็ด„ใ—ใพใ—ใŸโ™ช!ใพใ 2ใƒถๆœˆใ‚‚ๅ…ˆใ ใ‘ใฉใ€‚ๆ—ฉใ™ใŽ

Megagon Labs 160 Dec 23, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. ๊น€์œ ๋นˆ : ๋ชจ๋ธ๋ง / ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ / ํ”„๋กœ์ ํŠธ ์„ค๊ณ„ / back-end ๊น€์ข…์œค : ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ / ํ”„๋กœ์ ํŠธ ์„ค๊ณ„ / front-end Quick Start C

Eu-Bin KIM 94 Dec 8, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. ๊น€์œ ๋นˆ : ๋ชจ๋ธ๋ง / ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ / ํ”„๋กœ์ ํŠธ ์„ค๊ณ„ / back-end ๊น€์ข…์œค : ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ / ํ”„๋กœ์ ํŠธ ์„ค๊ณ„ / front-end / back-end ์ž„์šฉ

null 94 Dec 8, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 7, 2023