pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

Overview

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

Tests

A Transformer-based library for SocialNLP classification tasks.

Currently supports:

  • Sentiment Analysis (Spanish, English)
  • Emotion Analysis (Spanish, English)

Just do pip install pysentimiento and start using it:

Test it in Colab

from pysentimiento import SentimentAnalyzer
analyzer = SentimentAnalyzer(lang="es")

analyzer.predict("Qué gran jugador es Messi")
# returns SentimentOutput(output=POS, probas={POS: 0.998, NEG: 0.002, NEU: 0.000})
analyzer.predict("Esto es pésimo")
# returns SentimentOutput(output=NEG, probas={NEG: 0.999, POS: 0.001, NEU: 0.000})
analyzer.predict("Qué es esto?")
# returns SentimentOutput(output=NEU, probas={NEU: 0.993, NEG: 0.005, POS: 0.002})

analyzer.predict("jejeje no te creo mucho")
# SentimentOutput(output=NEG, probas={NEG: 0.587, NEU: 0.408, POS: 0.005})
"""
Emotion Analysis in English
"""

emotion_analyzer = EmotionAnalyzer(lang="en")

emotion_analyzer.predict("yayyy")
# returns EmotionOutput(output=joy, probas={joy: 0.723, others: 0.198, surprise: 0.038, disgust: 0.011, sadness: 0.011, fear: 0.010, anger: 0.009})
emotion_analyzer.predict("fuck off")
# returns EmotionOutput(output=anger, probas={anger: 0.798, surprise: 0.055, fear: 0.040, disgust: 0.036, joy: 0.028, others: 0.023, sadness: 0.019})

Also, you might use pretrained models directly with transformers library.

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("finiteautomata/beto-sentiment-analysis")

model = AutoModelForSequenceClassification.from_pretrained("finiteautomata/beto-sentiment-analysis")

Preprocessing

pysentimiento features a tweet preprocessor specially suited for tweet classification with transformer-based models.

from pysentimiento.preprocessing import preprocess_tweet

# Replaces user handles and URLs by special tokens
preprocess_tweet("@perezjotaeme debería cambiar esto http://bit.ly/sarasa") # "@usuario debería cambiar esto url"

# Shortens repeated characters
preprocess_tweet("no entiendo naaaaaaaadaaaaaaaa", shorten=2) # "no entiendo naadaa"

# Normalizes laughters
preprocess_tweet("jajajajaajjajaajajaja no lo puedo creer ajajaj") # "jaja no lo puedo creer jaja"

# Handles hashtags
preprocess_tweet("esto es #UnaGenialidad")
# "esto es una genialidad"

# Handles emojis
preprocess_tweet("🎉🎉", lang="en")
# 'emoji party popper emoji emoji party popper emoji'

Trained models so far

Check CLASSIFIERS.md for details on the reported performances of each model.

Spanish models

English models

Instructions for developers

  1. First, download TASS 2020 data to data/tass2020 (you have to register here to download the dataset)

Labels must be placed under data/tass2020/test1.1/labels

  1. Run script to train models

Check TRAIN_EVALUATE.md

  1. Upload models to Huggingface's Model Hub

Check "Model sharing and upload" instructions in huggingface docs.

License

pysentimiento is an open-source library. However, please be aware that models are trained with third-party datasets and are subject to their respective licenses, many of which are for non-commercial use

  1. TASS Dataset license (License for Sentiment Analysis in Spanish, Emotion Analysis in Spanish & English)
  2. SEMEval 2017 Dataset license (Sentiment Analysis in English)

Citation

If you use pysentimiento in your work, please cite this paper

@misc{perez2021pysentimiento,
      title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks},
      author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque},
      year={2021},
      eprint={2106.09462},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

TODO:

  • Upload some other models
  • Train in other languages

Suggestions and bugfixes

Please use the repository issue tracker to point out bugs and make suggestions (new models, use another datasets, some other languages, etc)

Comments
  • Why epochs is 5?

    Why epochs is 5?

    Hi,I noticed that the epochs is 5 during training, why not set it a bit larger? Is it because the epochs are set too large to cause overfitting? Thanks!

    opened by gongshaojie12 9
  • Support for python 3.10

    Support for python 3.10

    Hi, first of all great work!

    I am trying to install the dependency with pip in python3.10

    when I run the command:

    pip3 install git+https://github.com/pysentimiento/pysentimiento.git

    I get the error:

    ERROR: Package 'pysentimiento' requires a different Python: 3.10.4 not in '<3.10,>=3.7'

    Have you thought in making the library compatible with python3.10?

    Thanks in advance.

    opened by HugoJBello 7
  • When installing using pip install pysentimiento the analyzer.py and __init__.py are distinct than the ones in the repository

    When installing using pip install pysentimiento the analyzer.py and __init__.py are distinct than the ones in the repository

    Describe the bug When installing using pip install pysentimiento the analyzer.py and init.py are distinct than the ones in the repository. It is installing 0.2.5 instead of 0.4.2

    To Reproduce Using Python 3.10.6, I tried installing using pip install pysentimiento however the analyzer.py and init.py files are different from the ones in the github repository.

    To make the code work, I have to download the files from the github repository and replace them.

    Expected behavior How can we install from the github repository directly?, I tried but it was not possible.

    Environment pip freeze: absl-py==1.2.0 aiohttp==3.8.1 aiosignal==1.2.0 astunparse==1.6.3 async-timeout==4.0.2 attrs==22.1.0 Automat==20.2.0 cachetools==5.2.0 certifi==2022.6.15 cffi==1.15.1 charset-normalizer==2.1.1 click==8.1.3 cloudpickle==2.1.0 colorama==0.4.5 configparser==5.3.0 constantly==15.1.0 coverage==6.4.4 coveralls==3.3.1 cryptography==37.0.4 datasets==2.4.0 defusedxml==0.7.1 dill==0.3.5.1 docopt==0.6.2 emoji==2.0.0 exceptiongroup==1.0.0rc9 filelock==3.8.0 Flask==2.2.2 Flask-Cors==3.0.10 Flask-WTF==1.0.1 flatbuffers==1.12 frozenlist==1.3.1 fsspec==2022.8.2 future==0.18.2 gast==0.4.0 genson==1.2.2 google-auth==2.11.0 google-auth-oauthlib==0.4.6 google-pasta==0.2.0 grpcio==1.48.1 h5py==3.7.0 huggingface-hub==0.9.1 hyperlink==21.0.0 hypothesis==6.54.5 idna==3.3 incremental==21.3.0 iniconfig==1.1.1 itsdangerous==2.1.2 Jinja2==3.1.2 joblib==1.1.0 jsonschema==4.15.0 keras==2.9.0 Keras-Preprocessing==1.1.2 libclang==14.0.6 Markdown==3.4.1 MarkupSafe==2.1.1 mock==4.0.3 multidict==6.0.2 multiprocess==0.70.13 nltk==3.7 numpy==1.23.2 oauthlib==3.2.0 opt-einsum==3.3.0 packaging==21.3 pandas==1.4.4 pluggy==1.0.0 protobuf==3.19.4 py==1.11.0 pyarrow==9.0.0 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycparser==2.21 PyJWT==2.4.0 pyOpenSSL==22.0.0 pyparsing==3.0.9 pyrsistent==0.18.1 pysentimiento==0.2.5 pytest==7.1.3 pytest-cov==3.0.0 python-dateutil==2.8.2 pytz==2022.2.1 PyYAML==6.0 regex==2022.8.17 requests==2.28.1 requests-oauthlib==1.3.1 responses==0.18.0 rsa==4.9 scikit-learn==1.1.2 scipy==1.9.1 sentiment-analysis-spanish==0.0.25 simplejson==3.17.6 six==1.16.0 sklearn==0.0 sortedcontainers==2.4.0 tableauserverclient==0.19.0 tabpy==2.5.0 tensorboard==2.9.1 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorflow==2.9.2 tensorflow-estimator==2.9.0 tensorflow-io-gcs-filesystem==0.26.0 termcolor==1.1.0 textblob==0.17.1 threadpoolctl==3.1.0 tokenizers==0.12.1 tomli==2.0.1 torch==1.12.1 tornado==6.2 tqdm==4.64.1 transformers==4.21.3 Twisted==22.4.0 twisted-iocpsupport==1.0.2 typing_extensions==4.3.0 urllib3==1.26.12 Werkzeug==2.2.2 wrapt==1.14.1 WTForms==3.0.1 xxhash==3.0.0 yarl==1.8.1 zope.interface==5.4.0

    python --version Python 3.10.6

    Additional context Once I have replaced the files with the ones in the repository, it worked.

    opened by difemaro 6
  • ImportError: cannot import name 'SentimentAnalyzer'

    ImportError: cannot import name 'SentimentAnalyzer'

    Hi,

    Estoy intentando ocupar el código en python3 pero me insiste que necesito esa libreria, donde se encuenta?

    ImportError: cannot import name 'SentimentAnalyzer'

    Saludos,

    opened by davesnake01 6
  • updated for compatibility with python3.10

    updated for compatibility with python3.10

    I added two init.py in the test directories, otherwise I could not run the tests. I could not properly install with poetry, I suspect is not fully compatible with my python version. Nevertheless I installed the project with the same packages and versions using venv and everything works (including all the integration and unit tests).

    opened by HugoJBello 5
  • [BUG] Cannot make predictions for an array of texts

    [BUG] Cannot make predictions for an array of texts

    Describe the bug I'm trying to predict the sentiment of an array containing texts in spanish, but i'm having this error: Error: "softmax_lastdim_kernel_impl" not implemented for 'Half'

    To Reproduce

    
    # Import and instantiate transformers model
    from pysentimiento import create_analyzer
    analyzer = create_analyzer(task="sentiment", lang="es")
    print('Model instantiated' + '\n')
    
    # Obtain sentiment label from a text
    def get_sentence_sentiment(prediction):
        sentiment = prediction.output
        return sentiment
    
    # Obtain the sentiment score of a text
    def get_sentence_score(prediction):
        score = max(prediction.probas.values())
        return score
    
    # Obtain the sentiments of the texts
    def obtain_sentiments(df):
        texts = df['content'].to_numpy()
        from torch import autocast
        with autocast("cuda"):
            predictions = analyzer.predict(texts)
        
        sentiment_labels = [get_sentence_sentiment(prediction) for prediction in predictions]
        sentiment_scores = [get_sentence_score(prediction) for prediction in predictions]
        
        df['sentiment_label'] = sentiment_labels
        df['sentiment_score'] = sentiment_scores
        return df
    

    Expected behavior I'm expected to return a dataframe containing two new columns, one with the sentiment labels and the other with their scores.

    Environment pip freeze absl-py==0.15.0 adal==1.2.7 adlfs==2022.7.0 aiohttp==3.8.1 aiohttp-cors==0.7.0 aiosignal==1.2.0 alembic==1.8.1 analytics-python==1.4.0 ansiwrap==0.8.4 antlr4-python3-runtime==4.9.3 anyio==3.6.1 app-store-scraper==0.3.5 applicationinsights==0.11.10 arch==4.14 argcomplete==2.0.0 argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 arviz @ file:///tmp/build/80754af9/arviz_1614019183254/work astroid==2.11.7 asttokens==2.0.5 astunparse==1.6.3 async-timeout==4.0.2 attrs==21.4.0 auto-tqdm==1.0.2 autokeras==1.0.16 autopep8==1.6.0 azure-appconfiguration==1.1.1 azure-batch==12.0.0 azure-cli==2.38.0 azure-cli-core==2.38.0 azure-cli-telemetry==1.0.6 azure-common==1.1.28 azure-core==1.22.1 azure-cosmos==3.2.0 azure-data-tables==12.4.0 azure-datalake-store==0.0.52 azure-graphrbac==0.61.1 azure-identity==1.7.0 azure-keyvault==1.1.0 azure-keyvault-administration==4.0.0b3 azure-keyvault-keys==4.5.1 azure-loganalytics==0.1.1 azure-mgmt-advisor==9.0.0 azure-mgmt-apimanagement==3.0.0 azure-mgmt-appconfiguration==2.1.0 azure-mgmt-applicationinsights==1.0.0 azure-mgmt-authorization==2.0.0 azure-mgmt-batch==16.1.0 azure-mgmt-batchai==7.0.0b1 azure-mgmt-billing==6.0.0 azure-mgmt-botservice==2.0.0b3 azure-mgmt-cdn==12.0.0 azure-mgmt-cognitiveservices==13.2.0 azure-mgmt-compute==27.1.0 azure-mgmt-consumption==2.0.0 azure-mgmt-containerinstance==9.1.0 azure-mgmt-containerregistry==10.0.0 azure-mgmt-containerservice==19.1.0 azure-mgmt-core==1.3.0 azure-mgmt-cosmosdb==7.0.0b6 azure-mgmt-databoxedge==1.0.0 azure-mgmt-datalake-analytics==0.2.1 azure-mgmt-datalake-nspkg==3.0.1 azure-mgmt-datalake-store==0.5.0 azure-mgmt-datamigration==10.0.0 azure-mgmt-deploymentmanager==0.2.0 azure-mgmt-devtestlabs==4.0.0 azure-mgmt-dns==8.0.0 azure-mgmt-eventgrid==9.0.0 azure-mgmt-eventhub==10.1.0 azure-mgmt-extendedlocation==1.0.0b2 azure-mgmt-hdinsight==9.0.0 azure-mgmt-imagebuilder==1.0.0 azure-mgmt-iotcentral==10.0.0b1 azure-mgmt-iothub==2.2.0 azure-mgmt-iothubprovisioningservices==1.1.0 azure-mgmt-keyvault==10.0.0 azure-mgmt-kusto==0.3.0 azure-mgmt-loganalytics==13.0.0b4 azure-mgmt-managedservices==1.0.0 azure-mgmt-managementgroups==1.0.0 azure-mgmt-maps==2.0.0 azure-mgmt-marketplaceordering==1.1.0 azure-mgmt-media==9.0.0 azure-mgmt-monitor==3.0.0 azure-mgmt-msi==6.0.1 azure-mgmt-netapp==8.0.0 azure-mgmt-network==20.0.0 azure-mgmt-nspkg==3.0.2 azure-mgmt-policyinsights==1.1.0b2 azure-mgmt-privatedns==1.0.0 azure-mgmt-rdbms==10.0.0 azure-mgmt-recoveryservices==2.0.0 azure-mgmt-recoveryservicesbackup==5.0.0 azure-mgmt-redhatopenshift==1.1.0 azure-mgmt-redis==13.1.0 azure-mgmt-relay==0.1.0 azure-mgmt-reservations==2.0.0 azure-mgmt-resource==21.1.0 azure-mgmt-search==8.0.0 azure-mgmt-security==2.0.0b1 azure-mgmt-servicebus==7.1.0 azure-mgmt-servicefabric==1.0.0 azure-mgmt-servicefabricmanagedclusters==1.0.0 azure-mgmt-servicelinker==1.0.0 azure-mgmt-signalr==1.0.0b2 azure-mgmt-sql==4.0.0b2 azure-mgmt-sqlvirtualmachine==1.0.0b3 azure-mgmt-storage==20.0.0 azure-mgmt-synapse==2.1.0b2 azure-mgmt-trafficmanager==1.0.0 azure-mgmt-web==6.1.0 azure-multiapi-storage==0.9.0 azure-nspkg==3.0.2 azure-storage-blob==12.9.0 azure-storage-common==1.4.2 azure-storage-queue==12.3.0 azure-synapse-accesscontrol==0.5.0 azure-synapse-artifacts==0.13.0 azure-synapse-managedprivateendpoints==0.3.0 azure-synapse-spark==0.2.0 azureml-accel-models==1.43.0 azureml-automl-core==1.43.0 azureml-automl-dnn-nlp==1.43.0.post1 azureml-automl-runtime==1.43.0 azureml-cli-common==1.43.0 azureml-contrib-automl-pipeline-steps==1.43.0 azureml-contrib-dataset==1.43.0 azureml-contrib-fairness==1.43.0 azureml-contrib-notebook==1.43.0 azureml-contrib-pipeline-steps==1.43.0 azureml-contrib-reinforcementlearning==1.43.0 azureml-contrib-server==1.43.0 azureml-contrib-services==1.43.0 azureml-core==1.43.0 azureml-datadrift==1.43.0 azureml-dataprep==4.0.4 azureml-dataprep-native==38.0.0 azureml-dataprep-rslex==2.6.3 azureml-dataset-runtime==1.43.0.post2 azureml-defaults==1.43.0 azureml-explain-model==1.43.0 azureml-inference-server-http==0.4.13 azureml-interpret==1.43.0 azureml-mlflow==1.43.0.post1 azureml-opendatasets==1.43.0 azureml-pipeline==1.43.0 azureml-pipeline-core==1.43.0 azureml-pipeline-steps==1.43.0 azureml-responsibleai==1.43.0 azureml-samples @ file:///mnt/jupyter-azsamples azureml-sdk==1.43.0 azureml-telemetry==1.43.0 azureml-tensorboard==1.43.0 azureml-train==1.43.0 azureml-train-automl==1.43.0 azureml-train-automl-client==1.43.0 azureml-train-automl-runtime==1.43.0 azureml-train-core==1.43.0 azureml-train-restclients-hyperdrive==1.43.0 azureml-training-tabular==1.43.0 azureml-widgets==1.43.0 Babel==2.10.3 backcall==0.2.0 backoff==1.10.0 backports.functools-lru-cache @ file:///home/conda/feedstock_root/build_artifacts/backports.functools_lru_cache_1618230623929/work backports.tempfile==1.0 backports.weakref==1.0.post1 backports.zoneinfo==0.2.1 bcrypt==3.2.2 beautifulsoup4==4.11.1 bleach==5.0.1 blessed==1.19.1 blis==0.4.1 bokeh==2.4.3 Boruta==0.3 boto==2.49.0 boto3==1.20.19 botocore==1.23.19 Bottleneck==1.3.5 cachetools==5.2.0 catalogue==1.0.0 certifi @ file:///opt/conda/conda-bld/certifi_1655968806487/work/certifi cffi @ file:///opt/conda/conda-bld/cffi_1642701102775/work cftime @ file:///tmp/build/80754af9/cftime_1638357901230/work chardet==3.0.4 charset-normalizer==2.0.12 click==7.1.2 cloudpickle @ file:///Users/ktietz/demo/mc3/conda-bld/cloudpickle_1629142150447/work colorama==0.4.5 colorful==0.5.4 colorlover==0.3.0 configparser==3.7.4 contextlib2==21.6.0 convertdate @ file:///tmp/build/80754af9/convertdate_1634070773133/work coremltools @ git+https://github.com/apple/coremltools@13c064ed99ab1da7abea0196e4ddf663ede48aad cramjam==2.5.0 cryptography==37.0.3 cufflinks==0.17.3 cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work cymem==2.0.6 Cython==0.29.17 dask==2.30.0 dask-sql==2022.6.0 databricks-cli==0.17.0 dataclasses==0.6 datasets==2.6.1 debugpy==1.6.0 decorator==5.1.1 defusedxml==0.7.1 Deprecated==1.2.13 dice-ml==0.8 dill==0.3.5.1 distlib==0.3.5 distributed==2.30.1 distro==1.7.0 dm-tree==0.1.7 docker==5.0.3 docopt==0.6.2 dotnetcore2==3.1.23 dowhy==0.7.1 econml==0.12.0 emoji==1.7.0 en-core-web-sm @ https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz encrypted-inference==0.9 entrypoints==0.4 environments-utils==1.0.4 ephem @ file:///tmp/build/80754af9/ephem_1638942191467/work erroranalysis==0.3.2 executing==0.8.3 fabric==2.7.1 fairlearn==0.7.0 fastai==1.0.61 fastapi==0.79.0 fastjsonschema==2.15.3 fastparquet==0.8.1 fastprogress==1.0.3 fbprophet @ file:///home/conda/feedstock_root/build_artifacts/fbprophet_1599365532360/work ffmpy==0.3.0 filelock==3.7.1 fire==0.4.0 flake8==4.0.1 Flask==1.0.3 Flask-Cors==3.0.10 flatbuffers==2.0 fonttools==4.25.0 frozenlist==1.3.0 fsspec==2022.5.0 funcy==1.17 fusepy==3.0.1 future==0.18.2 gast==0.3.3 gensim==3.8.3 gevent==1.3.6 gitdb==4.0.9 GitPython==3.1.27 google-api-core==2.8.2 google-auth==2.8.0 google-auth-oauthlib==0.4.6 google-pasta==0.2.0 google-play-scraper==1.2.2 googleapis-common-protos==1.56.3 gpustat==1.0.0rc1 gradio==3.1.7 greenlet==1.1.2 grpcio==1.47.0 gunicorn==20.1.0 gym==0.21.0 h11==0.12.0 h5py==3.7.0 HeapDict==1.0.1 hijri-converter @ file:///tmp/build/80754af9/hijri-converter_1634064010501/work holidays==0.10.3 horovod==0.19.1 htmlmin==0.1.12 httpcore==0.15.0 httpx==0.23.0 huggingface-hub==0.10.1 humanfriendly==10.0 humanize==4.2.3 idna==2.10 ImageHash==4.2.1 imageio==2.19.5 imbalanced-learn==0.7.0 importlib-metadata==4.11.4 importlib-resources==5.8.0 inference-schema==1.3.0 interpret-community==0.26.0 interpret-core==0.2.7 invoke==1.7.1 ipykernel==6.8.0 ipython==8.4.0 ipython-genutils==0.2.0 ipywidgets==7.7.1 isodate==0.6.1 isort==5.10.1 itsdangerous==1.1.0 javaproperties==0.5.2 jedi==0.18.0 jeepney==0.8.0 Jinja2==2.11.2 jmespath==0.10.0 joblib==0.14.1 JPype1==1.4.0 json-logging-py==0.2 json5==0.9.8 jsondiff==2.0.0 jsonpickle==2.2.0 jsonschema==4.6.0 jupyter==1.0.0 jupyter-client==6.1.12 jupyter-console==6.4.4 jupyter-core==4.10.0 jupyter-resource-usage==0.6.1 jupyter-server==1.18.1 jupyter-server-mathjax==0.2.6 jupyter-server-proxy==3.2.1 jupyterlab==3.2.4 jupyterlab-nvdashboard==0.7.0 jupyterlab-pygments==0.2.2 jupyterlab-server==2.15.0 jupyterlab-system-monitor==0.8.0 jupyterlab-topbar==0.6.1 jupyterlab-widgets==1.1.1 jupytext==1.14.0 Keras==2.3.1 Keras-Applications==1.0.8 keras-nightly==2.5.0.dev2021032900 Keras-Preprocessing==1.1.2 keras-tuner==1.1.3 keras2onnx==1.6.0 kiwisolver==1.4.3 kmodes==0.12.1 knack==0.9.0 korean-lunar-calendar @ file:///tmp/build/80754af9/korean_lunar_calendar_1634063020401/work kt-legacy==1.0.4 lazy-object-proxy==1.7.1 liac-arff==2.5.0 lightgbm==3.2.1 linkify-it-py==1.0.3 llvmlite==0.36.0 locket==1.0.0 LunarCalendar @ file:///tmp/build/80754af9/lunarcalendar_1646383991234/work lz4==4.0.1 Mako==1.2.1 Markdown==3.4.1 markdown-it-py==2.1.0 MarkupSafe==2.0.1 matplotlib==3.2.1 matplotlib-inline==0.1.3 mccabe==0.6.1 mdit-py-plugins==0.3.0 mdurl==0.1.1 missingno==0.5.1 mistune==0.8.4 ml-wrappers==0.2.0 mlflow==1.27.0 mlflow-skinny==1.26.1 mlxtend==0.20.0 monotonic==1.6 mpmath==1.2.1 msal==1.18.0 msal-extensions==0.3.1 msgpack==1.0.4 msrest==0.6.21 msrestazure==0.6.4 multidict==6.0.2 multimethod==1.8 multiprocess==0.70.13 munkres==1.1.4 murmurhash==1.0.7 nbclassic==0.4.3 nbclient==0.6.6 nbconvert==6.5.0 nbdime==3.1.1 nbformat==5.2.0 ndg-httpsclient==0.5.1 nest-asyncio==1.5.5 netCDF4==1.5.7 networkx==2.5 nimbusml==1.8.0 nltk==3.7 notebook==6.4.12 notebook-shim==0.1.0 numba==0.53.1 numexpr==2.8.3 numpy==1.19.0 nvidia-ml-py==11.495.46 nvidia-ml-py3==7.352.0 oauthlib==3.2.0 olefile @ file:///Users/ktietz/demo/mc3/conda-bld/olefile_1629805411829/work onnx==1.7.0 onnxconverter-common==1.6.0 onnxmltools==1.4.1 onnxruntime==1.8.1 opencensus==0.9.0 opencensus-context==0.1.2 opencensus-ext-azure==1.1.4 opencv-python-headless==4.6.0.66 opt-einsum==3.3.0 orjson==3.7.12 packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work pandas==1.1.5 pandas-ml==0.6.1 pandas-profiling==3.2.0 pandocfilters==1.5.0 papermill==1.2.1 paramiko==2.11.0 parso==0.8.3 partd==1.2.0 pathlib2==2.3.7.post1 pathspec==0.9.0 patsy==0.5.2 pexpect==4.8.0 phik==0.12.2 pickleshare==0.7.5 Pillow==6.2.1 pipreqs==0.4.11 pkginfo==1.8.3 plac==1.1.3 platformdirs==2.5.2 plotly==5.9.0 pluggy==1.0.0 pmdarima==1.7.1 portalocker==2.4.0 preshed==3.0.6 prometheus-client==0.14.1 prometheus-flask-exporter==0.20.2 prompt-toolkit==3.0.28 property-cached==1.6.4 protobuf==3.20.1 psutil==5.9.1 psycopg2 @ file:///tmp/build/80754af9/psycopg2_1612298147424/work ptyprocess==0.7.0 pure-eval==0.2.2 py-spy==0.3.12 py4j==0.10.9.5 pyarrow==10.0.0 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycaret==2.3.10 pycocotools==2.0.2 pycodestyle==2.6.0 pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work pycryptodome==3.15.0 pydantic==1.9.1 pydocstyle==6.1.1 pydot==1.4.2 pydub==0.25.1 pyflakes==2.2.0 PyGithub==1.55 Pygments==2.12.0 PyJWT==2.4.0 pyLDAvis==3.3.1 pylint==2.14.5 PyMeeus @ file:///tmp/build/80754af9/pymeeus_1634069098549/work PyNaCl==1.5.0 pynndescent==0.5.7 pynvml==11.4.1 pyod==1.0.3 pyodbc @ file:///tmp/build/80754af9/pyodbc_1647408110185/work pyOpenSSL==22.0.0 pyparsing==3.0.9 pyreadline3==3.4.1 pyrsistent==0.18.1 pysentimiento==0.5.2 PySocks==1.7.1 pyspark==3.3.0 pystan @ file:///home/conda/feedstock_root/build_artifacts/pystan_1598392747715/work python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work python-jsonrpc-server==0.4.0 python-language-server==0.35.0 python-multipart==0.0.5 python-snappy==0.6.1 pytoolconfig==1.2.1 pytorch-transformers==1.0.0 pytz==2019.3 pytz-deprecation-shim==0.1.0.post0 PyWavelets==1.3.0 PyYAML==6.0 pyzmq==23.2.0 qtconsole==5.3.1 QtPy==2.1.0 QuantLib==1.27 querystring-parser==1.2.4 rai-core-flask==0.3.0 raiutils==0.1.0 raiwidgets==0.19.0 ray==1.13.0 regex==2022.6.2 requests==2.23.0 requests-oauthlib==1.3.1 responses==0.18.0 responsibleai==0.19.0 rfc3986==1.5.0 rope==1.2.0 rsa==4.8 s3transfer==0.5.2 sacremoses==0.0.53 scikit-image==0.19.3 scikit-learn==0.22.1 scikit-plot==0.3.7 scipy==1.5.3 scp==0.13.6 scrapbook==0.5.0 seaborn==0.11.2 SecretStorage==3.3.2 semver==2.13.0 Send2Trash==1.8.0 sentencepiece==0.1.96 seqeval==1.2.2 setuptools-git==1.2 shap==0.39.0 simpervisor==0.4 six==1.16.0 skl2onnx==1.4.9 sklearn-pandas==1.7.0 slicer==0.0.7 smart-open==1.9.0 smmap==5.0.0 sniffio==1.2.0 snowballstemmer==2.2.0 sortedcontainers==2.4.0 soupsieve==2.3.2.post1 spacy==2.2.4 sparse==0.13.0 SQLAlchemy==1.4.39 sqlparse==0.4.2 srsly==1.0.5 sshtunnel==0.1.5 stack-data==0.3.0 starlette==0.19.1 statsmodels==0.11.0 sympy==1.10.1 tabulate==0.8.10 tangled-up-in-unicode==0.2.0 tblib==1.7.0 tenacity==8.0.1 tensorboard==2.2.2 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorboardX==2.5.1 tensorflow==2.2.0 tensorflow-estimator==2.2.0 tensorflow-gpu==2.2.0 termcolor==1.1.0 terminado==0.15.0 testpath==0.6.0 textblob==0.17.1 textwrap3==0.9.2 thinc==7.4.0 threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work tifffile==2022.5.4 tinycss2==1.1.1 tokenizers==0.13.2 toml==0.10.2 tomli==2.0.1 tomlkit==0.11.1 toolz==0.11.2 torch==1.11.0+cu113 torch-tb-profiler==0.4.0 torchaudio==0.11.0+cu113 torchvision==0.12.0+cu113 tornado==6.1 tqdm @ file:///opt/conda/conda-bld/tqdm_1650891076910/work traitlets==5.3.0 transformers==4.24.0 typing-extensions==4.2.0 tzdata==2022.1 tzlocal==4.2 uc-micro-py==1.0.1 ujson==5.4.0 umap-learn==0.5.3 urllib3==1.25.11 uuid==1.30 uvicorn==0.18.2 virtualenv==20.15.1 visions==0.7.4 waitress==2.1.1 wasabi==0.9.1 wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1600965781394/work webencodings==0.5.1 websocket-client==1.3.3 websockets==10.3 Werkzeug==1.0.1 widgetsnbextension==3.6.1 wordcloud==1.8.2.2 wrapt==1.12.1 xarray @ file:///opt/conda/conda-bld/xarray_1639166117697/work xgboost==1.3.3 xmltodict==0.13.0 xxhash==3.0.0 yapf==0.32.0 yarg==0.1.9 yarl==1.7.2 yellowbrick==1.4 zict==2.2.0 zipp==3.8.0 zope.event==4.5.0 zope.interface==5.4.0

    python --version Python 3.8.13

    opened by juanchate 4
  • Download and use model locally

    Download and use model locally

    Hi, guys. First of all, great lib, works great and it's helping me a tons in a recent project. I'm building an app for my job, but I have some security limitations, and one of them is that I can't reach external endpoints from the internal network, so I wonder if theres any way I can load the model locally after download it. With hugginface library it'll be something like:

    !git clone https://huggingface.co/ORGANIZATION_OR_USER/MODEL_NAME

    from transformers import AutoModel
    
    model = AutoModel.from_pretrained('./MODEL_NAME')`
    

    Thanks in advance.

    opened by arieltoledo 4
  • ValueError: Non-consecutive added token '<mask>' found. Should have index 63996 but has index 64000 in saved vocabulary

    ValueError: Non-consecutive added token '' found. Should have index 63996 but has index 64000 in saved vocabulary

    I am getting following error while importing tokenizer. Is this allowed one?

    Code: tokenizer = BertTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis') model = BertForSequenceClassification.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis') Error: ` The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. The tokenizer class you load from this checkpoint is 'BertweetTokenizer'. The class this function is called from is 'BertTokenizer'.

    ValueError Traceback (most recent call last) in () 2 3 # initialize the tokenizer for BERT models ----> 4 tokenizer = BertTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis') 5 # initialize the model for sequence classification 6 model = BertForSequenceClassification.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis')

    1 frames /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, *init_inputs, **kwargs) 1920 # current length of the tokenizer. 1921 raise ValueError( -> 1922 f"Non-consecutive added token '{token}' found. " 1923 f"Should have index {len(tokenizer)} but has index {index} in saved vocabulary." 1924 )

    ValueError: Non-consecutive added token '' found. Should have index 63996 but has index 64000 in saved vocabulary. `

    opened by amitkayal 4
  • Tokenizer Error

    Tokenizer Error

    Hello, I am getting an error when the following code (extracted from the examples) is executed:

    from pysentimiento import SentimentAnalyzer
    analyzer = SentimentAnalyzer(lang="es")
    
    

    Error:

    AssertionError: Non-consecutive added token '@usuario' found. Should have index 31006 but has index 31002 in saved vocabulary.

    Thank you

    opened by JOTOR 4
  • below Issue when we use transformer code

    below Issue when we use transformer code


    AssertionError Traceback (most recent call last) in 1 from transformers import AutoTokenizer, AutoModelForSequenceClassification 2 ----> 3 tokenizer = AutoTokenizer.from_pretrained("finiteautomata/beto-sentiment-analysis") 4 5 model = AutoModelForSequenceClassification.from_pretrained("finiteautomata/beto-sentiment-analysis")

    ~/thesis/copycat/copy_env/lib64/python3.6/site-packages/transformers/models/auto/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs) 421 tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] 422 if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): --> 423 return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) 424 else: 425 if tokenizer_class_py is not None:

    ~/thesis/copycat/copy_env/lib64/python3.6/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs) 1708 1709 return cls._from_pretrained( -> 1710 resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, **kwargs 1711 ) 1712

    ~/thesis/copycat/copy_env/lib64/python3.6/site-packages/transformers/tokenization_utils_base.py in _from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, **kwargs) 1814 for token, index in added_tok_encoder_sorted: 1815 assert index == len(tokenizer), ( -> 1816 f"Non-consecutive added token '{token}' found. " 1817 f"Should have index {len(tokenizer)} but has index {index} in saved vocabulary." 1818 )

    AssertionError: Non-consecutive added token '[USER]' found. Should have index 31005 but has index 31002 in saved vocabulary.

    opened by avinashpaul 4
  • outdated example on Readme?

    outdated example on Readme?

    Following the example you will get

    In [1]: from pysentimiento import SentimentAnalyzer
    
    In [2]: analyzer = SentimentAnalyzer(lang="es")
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-2-479bef79285e> in <module>
    ----> 1 analyzer = SentimentAnalyzer(lang="es")
    
    TypeError: __init__() got an unexpected keyword argument 'lang'
    

    Edit: looks like the pip version is different to the one on github

    opened by Zincr0 4
  • [BUG] RuntimeError: Failed to import transformers.trainer because of the following error

    [BUG] RuntimeError: Failed to import transformers.trainer because of the following error

    Describe the bug Gives error during import, saying: RuntimeError: Failed to import transformers.trainer because of the following error

    To Reproduce

    !pip install pysentimiento -q
    # !pip install transformers -q
    from pysentimiento import create_analyzer
    

    Expected behavior

    It should have been imported and worked.

    Environment

    Python: 3.7.12 pip freeze:

    absl-py==0.15.0
    accelerate==0.12.0
    access==1.1.8
    affine==2.3.1
    aiobotocore==2.4.0
    aiohttp @ file:///home/conda/feedstock_root/build_artifacts/aiohttp_1649013150570/work
    aioitertools==0.11.0
    aiosignal @ file:///home/conda/feedstock_root/build_artifacts/aiosignal_1636093929600/work
    albumentations==1.3.0
    alembic==1.8.1
    allennlp==2.10.0
    altair==4.2.0
    annoy==1.17.1
    ansiwrap==0.8.4
    anyio @ file:///home/conda/feedstock_root/build_artifacts/anyio_1652463872367/work/dist
    apache-beam==2.40.0
    aplus==0.11.0
    appdirs @ file:///home/conda/feedstock_root/build_artifacts/appdirs_1603108395799/work
    argon2-cffi @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi_1640817743617/work
    argon2-cffi-bindings @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi-bindings_1649500320262/work
    arrow @ file:///home/conda/feedstock_root/build_artifacts/arrow_1643313750486/work
    arviz==0.12.1
    asn1crypto @ file:///home/conda/feedstock_root/build_artifacts/asn1crypto_1647369152656/work
    astroid==2.12.11
    astropy==4.3.1
    astunparse==1.6.3
    async-timeout @ file:///home/conda/feedstock_root/build_artifacts/async-timeout_1640026696943/work
    asynctest==0.13.0
    atpublic==2.3
    attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1640799537051/work
    audioread==3.0.0
    autocfg==0.0.8
    autopage==0.5.1
    autopep8==1.6.0
    aws-requests-auth==0.4.3
    Babel @ file:///home/conda/feedstock_root/build_artifacts/babel_1655419414885/work
    backcall @ file:///home/conda/feedstock_root/build_artifacts/backcall_1592338393461/work
    backports.functools-lru-cache @ file:///home/conda/feedstock_root/build_artifacts/backports.functools_lru_cache_1618230623929/work
    backports.zoneinfo==0.2.1
    base58==2.1.1
    bayesian-optimization==1.2.0
    bayespy==0.5.24
    beatrix-jupyterlab @ file:///tmp/beatrix_jupyterlab-latest.tar.gz
    beautifulsoup4 @ file:///home/conda/feedstock_root/build_artifacts/beautifulsoup4_1649463573192/work
    bidict==0.22.0
    binaryornot==0.4.4
    biopython==1.79
    black @ file:///home/conda/feedstock_root/build_artifacts/black-recipe_1656424001314/work
    blake3==0.2.1
    bleach @ file:///home/conda/feedstock_root/build_artifacts/bleach_1656355450470/work
    blinker==1.4
    blis==0.7.9
    bokeh==2.4.3
    Boruta==0.3
    boto3==1.24.93
    botocore==1.27.93
    -e git+https://github.com/SohierDane/BigQuery_Helper@8615a7f6c1663e7f2d48aa2b32c2dbcb600a440f#egg=bq_helper
    bqplot==0.12.36
    branca==0.5.0
    brewer2mpl==1.4.1
    brotlipy==0.7.0
    cached-path==1.1.6
    cached-property==1.5.2
    cachetools==4.2.4
    Cartopy @ file:///home/conda/feedstock_root/build_artifacts/cartopy_1630680835556/work
    catalogue==2.0.8
    catalyst==22.4
    catboost==1.1
    category-encoders==2.5.1.post0
    certifi==2022.9.24
    cesium==0.10.1
    cffi @ file:///home/conda/feedstock_root/build_artifacts/cffi_1636046052501/work
    cftime==1.6.2
    chardet @ file:///home/conda/feedstock_root/build_artifacts/chardet_1656142026456/work
    charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1655906222726/work
    chex==0.1.5
    clang==5.0
    cleverhans==4.0.0
    click==8.0.4
    click-plugins==1.1.1
    cliff==3.10.1
    cligj==0.7.2
    cloud-tpu-client==0.10
    cloud-tpu-profiler==2.4.0
    cloudpickle @ file:///home/conda/feedstock_root/build_artifacts/cloudpickle_1653061851209/work
    cmaes==0.8.2
    cmd2==2.4.2
    cmdstanpy==1.0.7
    cmudict==1.0.2
    colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1655412516417/work
    colorcet==3.0.1
    colorlog==6.7.0
    colorlover==0.3.0
    commonmark==0.9.1
    conda==22.9.0
    conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1649385049221/work
    confection==0.0.3
    configparser==5.3.0
    contextily==1.2.0
    contextlib2==21.6.0
    convertdate==2.4.0
    cookiecutter @ file:///home/conda/feedstock_root/build_artifacts/cookiecutter_1654122127219/work
    crcmod==1.7
    cryptography @ file:///home/conda/feedstock_root/build_artifacts/cryptography_1652967085355/work
    cufflinks==0.17.3
    CVXcanon==0.1.2
    cycler @ file:///home/conda/feedstock_root/build_artifacts/cycler_1635519461629/work
    cymem==2.0.7
    cysignals==1.11.2
    Cython==0.29.32
    cytoolz==0.12.0
    daal==2021.6.0
    daal4py==2021.6.3
    dask==2022.2.0
    dataclasses @ file:///home/conda/feedstock_root/build_artifacts/dataclasses_1628958434797/work
    datasets==1.18.4
    datashader==0.14.2
    datashape==0.5.2
    datatable==1.0.0
    datatile==1.0.3
    deap==1.3.3
    debugpy @ file:///home/conda/feedstock_root/build_artifacts/debugpy_1649586340600/work
    decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1641555617451/work
    defusedxml @ file:///home/conda/feedstock_root/build_artifacts/defusedxml_1615232257335/work
    Delorean==1.0.0
    deprecat==2.1.1
    deprecation==2.1.0
    descartes==1.1.0
    dill==0.3.5.1
    dipy==1.5.0
    distlib==0.3.4
    distributed==2022.2.0
    dlib==19.24.0
    dm-tree==0.1.7
    docker @ file:///home/conda/feedstock_root/build_artifacts/docker-py_1638897274897/work
    docker-pycreds==0.4.0
    docopt==0.6.2
    docutils==0.19
    earthengine-api==0.1.327
    easydict==1.10
    easyocr==1.6.2
    ecos==2.0.10
    eli5==0.13.0
    emoji==1.7.0
    en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.3.0/en_core_web_lg-3.3.0-py3-none-any.whl
    en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.3.0/en_core_web_sm-3.3.0-py3-none-any.whl
    entrypoints @ file:///home/conda/feedstock_root/build_artifacts/entrypoints_1643888246732/work
    ephem==4.1.3
    esda==2.4.3
    essentia==2.1b6.dev858
    et-xmlfile==1.1.0
    etils==0.8.0
    explainable-ai-sdk @ file:///opt/conda/conda-bld/dlenv-tf-2-6-cpu_1656642848658/work/explainable_ai_sdk-1-py3-none-any.whl
    explainers @ file:///opt/conda/conda-bld/dlenv-tf-2-6-cpu_1656642848658/work/explainers-1-cp37-cp37m-linux_x86_64.whl
    fairscale==0.4.6
    fastai==2.7.9
    fastapi==0.85.1
    fastavro==1.5.2
    fastcore==1.5.27
    fastdownload==0.0.7
    fasteners==0.17.3
    fastjsonschema @ file:///home/conda/feedstock_root/build_artifacts/python-fastjsonschema_1641751198313/work/dist
    fastprogress==1.0.3
    fasttext==0.9.2
    fbpca==1.0
    feather-format==0.4.1
    featuretools==1.11.1
    filelock==3.7.1
    Fiona==1.8.22
    fitter==1.5.1
    flake8==4.0.1
    flashtext==2.7
    Flask==2.2.2
    flatbuffers==1.12
    flax==0.6.1
    flit_core @ file:///home/conda/feedstock_root/build_artifacts/flit-core_1645629044586/work/source/flit_core
    folium==0.13.0
    fonttools @ file:///home/conda/feedstock_root/build_artifacts/fonttools_1651017735934/work
    frozendict==2.3.4
    frozenlist @ file:///home/conda/feedstock_root/build_artifacts/frozenlist_1648771692657/work
    fsspec==2022.8.2
    funcy==1.17
    fury==0.8.0
    future==0.18.2
    fuzzywuzzy==0.18.0
    gast==0.4.0
    gatspy==0.3
    gcsfs @ file:///home/conda/feedstock_root/build_artifacts/gcsfs_1653068494316/work
    gensim==4.0.1
    geographiclib==1.52
    Geohash==1.0
    geojson==2.5.0
    geopandas==0.10.2
    geoplot==0.5.1
    geopy==2.2.0
    geoviews==1.9.5
    ggplot @ https://github.com/hbasria/ggpy/archive/0.11.5.zip
    giddy==2.3.3
    gitdb @ file:///home/conda/feedstock_root/build_artifacts/gitdb_1635085722655/work
    GitPython @ file:///home/conda/feedstock_root/build_artifacts/gitpython_1645531658201/work
    gluoncv==0.10.5.post0
    gluonnlp==0.10.0
    google-api-core==1.33.2
    google-api-python-client==1.12.11
    google-apitools==0.5.31
    google-auth==1.35.0
    google-auth-httplib2 @ file:///home/conda/feedstock_root/build_artifacts/google-auth-httplib2_1654134467987/work
    google-auth-oauthlib==0.4.6
    google-cloud-aiplatform @ git+https://github.com/googleapis/python-aiplatform.git@4ed7a50fef58d694ddb29d4240965d44e383da2b
    google-cloud-appengine-logging==1.1.2
    google-cloud-audit-log==0.2.2
    google-cloud-automl==1.0.1
    google-cloud-bigquery==2.2.0
    google-cloud-bigtable==2.10.1
    google-cloud-core==1.7.3
    google-cloud-dataproc==4.0.3
    google-cloud-datastore==2.7.1
    google-cloud-dlp==3.7.1
    google-cloud-firestore==2.5.3
    google-cloud-kms==2.11.2
    google-cloud-language==2.4.3
    google-cloud-logging==3.1.2
    google-cloud-monitoring==2.9.2
    google-cloud-pubsub==2.13.0
    google-cloud-pubsublite==1.4.2
    google-cloud-recommendations-ai==0.2.0
    google-cloud-resource-manager==1.5.1
    google-cloud-scheduler==2.6.4
    google-cloud-spanner==3.15.1
    google-cloud-speech==2.14.1
    google-cloud-storage==1.44.0
    google-cloud-tasks==2.9.1
    google-cloud-translate==3.7.4
    google-cloud-videointelligence==2.7.1
    google-cloud-vision==2.7.3
    google-crc32c @ file:///home/conda/feedstock_root/build_artifacts/google-crc32c_1651517221523/work
    google-pasta==0.2.0
    google-resumable-media==1.3.3
    googleapis-common-protos @ file:///home/conda/feedstock_root/build_artifacts/googleapis-common-protos-feedstock_1655852961744/work
    gplearn==0.4.2
    gpxpy==1.5.0
    graphviz==0.8.4
    greenlet @ file:///home/conda/feedstock_root/build_artifacts/greenlet_1648882385539/work
    grpc-google-iam-v1==0.12.4
    grpcio==1.43.0
    grpcio-gcp @ file:///home/conda/feedstock_root/build_artifacts/grpcio-gcp_1635875856259/work
    grpcio-status==1.47.0
    gviz-api==1.10.0
    gym==0.26.2
    gym-notices==0.0.8
    h11==0.14.0
    h2o==3.38.0.1
    h5py==3.7.0
    haversine==2.7.0
    hdfs==2.7.0
    HeapDict==1.0.1
    hep-ml==0.7.1
    hijri-converter==2.2.4
    hmmlearn==0.2.8
    holidays==0.16
    holoviews==1.15.1
    hpsklearn==0.1.0
    html5lib==1.1
    htmlmin==0.1.12
    httplib2 @ file:///home/conda/feedstock_root/build_artifacts/httplib2_1644593570376/work
    httplib2shim==0.0.3
    httptools==0.5.0
    huggingface-hub==0.10.1
    humanize==4.4.0
    hunspell==0.5.5
    husl==4.0.3
    hydra-slayer==0.4.0
    hyperopt==0.2.7
    hypertools==0.8.0
    ibis-framework==2.1.1
    idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1642433548627/work
    igraph==0.10.2
    imagecodecs==2021.11.20
    ImageHash @ file:///home/conda/feedstock_root/build_artifacts/imagehash_1626361020540/work
    imageio==2.19.3
    imbalanced-learn==0.9.0
    imgaug==0.4.0
    implicit @ file:///home/conda/feedstock_root/build_artifacts/implicit_1606198395798/work
    importlib-metadata==4.13.0
    importlib-resources @ file:///home/conda/feedstock_root/build_artifacts/importlib_resources_1655356668708/work
    inequality==1.0.0
    iniconfig==1.1.1
    ipydatawidgets==4.3.2
    ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1655369107642/work
    ipyleaflet==0.17.1
    ipympl==0.7.0
    ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_1651240553635/work
    ipython-genutils==0.2.0
    ipython-sql @ file:///home/conda/feedstock_root/build_artifacts/ipython-sql_1636816912182/work
    ipyvolume==0.5.2
    ipyvue==1.8.0
    ipyvuetify==1.8.4
    ipywebrtc==0.6.0
    ipywidgets==7.7.1
    iso3166==2.1.1
    isort==5.10.1
    isoweek==1.3.3
    itsdangerous==2.1.2
    Janome==0.4.2
    jax==0.3.23
    jaxlib==0.3.22
    jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1649067102072/work
    jeepney==0.8.0
    jieba==0.42.1
    Jinja2==3.1.2
    jinja2-time @ file:///home/conda/feedstock_root/build_artifacts/jinja2-time_1646750632133/work
    jmespath==1.0.1
    joblib @ file:///home/conda/feedstock_root/build_artifacts/joblib_1612898609989/work
    json5 @ file:///home/conda/feedstock_root/build_artifacts/json5_1600692310011/work
    jsonlines==1.2.0
    jsonnet==0.18.0
    jsonschema @ file:///home/conda/feedstock_root/build_artifacts/jsonschema-meta_1656454091745/work
    jupyter==1.0.0
    jupyter-client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1654730843242/work
    jupyter-console==6.4.4
    jupyter-core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1652365252517/work
    jupyter-http-over-ws==0.0.8
    jupyter-lsp==1.5.1
    jupyter-server @ file:///home/conda/feedstock_root/build_artifacts/jupyter_server_1656185096375/work
    jupyter-server-mathjax @ file:///home/conda/feedstock_root/build_artifacts/jupyter-server-mathjax_1645541128695/work
    jupyter-server-proxy @ file:///home/conda/feedstock_root/build_artifacts/jupyter-server-proxy_1643080298941/work
    jupyterlab @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_1643984239174/work
    jupyterlab-git @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab-git_1650975607360/work
    jupyterlab-lsp==3.10.2
    jupyterlab-pygments @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_pygments_1649936611996/work
    jupyterlab-server @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_server_1641592475363/work
    jupyterlab-widgets==1.1.1
    jupytext @ file:///home/conda/feedstock_root/build_artifacts/jupytext_1649224989735/work
    kaggle==1.5.12
    kaggle-environments==1.10.0
    keras==2.6.0
    Keras-Preprocessing==1.1.2
    keras-tuner==1.1.2
    keyring==23.6.0
    keyrings.google-artifactregistry-auth==1.0.0
    kiwisolver @ file:///home/conda/feedstock_root/build_artifacts/kiwisolver_1655141583606/work
    kmapper==2.0.1
    kmodes==0.12.2
    korean-lunar-calendar==0.3.1
    kornia==0.5.8
    kt-legacy==1.0.4
    kubernetes @ file:///home/conda/feedstock_root/build_artifacts/python-kubernetes_1656005126328/work
    langcodes==3.3.0
    langid==1.1.6
    lazy-object-proxy==1.7.1
    learntools @ git+https://github.com/Kaggle/learntools@bcb7329ecdcd9c40e80637aba228edd4cb4950b4
    leven==1.0.4
    Levenshtein==0.20.7
    libpysal==4.6.2
    librosa==0.9.2
    lightfm==1.16
    lightgbm==3.3.2
    lime==0.2.0.1
    line-profiler==3.5.1
    llvmlite==0.38.1
    lmdb==1.3.0
    lml==0.1.0
    locket==1.0.0
    LunarCalendar==0.0.9
    lxml==4.9.1
    Mako==1.2.3
    mapclassify==2.4.3
    marisa-trie==0.7.7
    Markdown @ file:///home/conda/feedstock_root/build_artifacts/markdown_1651821407140/work
    markdown-it-py @ file:///home/conda/feedstock_root/build_artifacts/markdown-it-py_1650305363826/work
    markovify==0.9.4
    MarkupSafe==2.1.1
    matplotlib==3.5.3
    matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1631080358261/work
    matplotlib-venn==0.11.7
    matrixprofile @ git+https://github.com/matrix-profile-foundation/matrixprofile.git@6bea7d4445284dbd9700a097974ef6d4613fbca7
    mccabe==0.6.1
    mdit-py-plugins @ file:///home/conda/feedstock_root/build_artifacts/mdit-py-plugins_1639763187273/work
    mdurl @ file:///home/conda/feedstock_root/build_artifacts/mdurl_1639515908913/work
    memory-profiler==0.60.0
    mercantile==1.2.1
    mgwr==2.1.2
    missingno==0.4.2
    mistune @ file:///home/conda/feedstock_root/build_artifacts/mistune_1635844677043/work
    mizani==0.7.3
    mlcrate==0.2.0
    mlens==0.2.3
    mlxtend==0.21.0
    mmh3==3.0.0
    mne==1.2.0
    mnist==0.2.2
    mock==4.0.3
    momepy==0.5.4
    more-itertools==9.0.0
    mpld3==0.5.8
    mpmath==1.2.1
    msgpack==1.0.4
    msgpack-numpy==0.4.8
    multidict @ file:///home/conda/feedstock_root/build_artifacts/multidict_1648882415996/work
    multimethod @ file:///home/conda/feedstock_root/build_artifacts/multimethod_1603129052241/work
    multipledispatch==0.6.0
    multiprocess==0.70.13
    munch==2.5.0
    munkres==1.1.4
    murmurhash==1.0.9
    mxnet==1.9.1
    mypy-extensions @ file:///home/conda/feedstock_root/build_artifacts/mypy_extensions_1649013329265/work
    nb-conda @ file:///home/conda/feedstock_root/build_artifacts/nb_conda_1654442778977/work
    nb-conda-kernels @ file:///home/conda/feedstock_root/build_artifacts/nb_conda_kernels_1636999991206/work
    nbclassic @ file:///home/conda/feedstock_root/build_artifacts/nbclassic_1647450696711/work
    nbclient @ file:///home/conda/feedstock_root/build_artifacts/nbclient_1646999386773/work
    nbconvert @ file:///home/conda/feedstock_root/build_artifacts/nbconvert-meta_1648822144012/work
    nbdime @ file:///home/conda/feedstock_root/build_artifacts/nbdime_1635269257164/work
    nbformat @ file:///home/conda/feedstock_root/build_artifacts/nbformat_1651607001005/work
    nest-asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1648959695634/work
    netCDF4==1.6.1
    networkx @ file:///home/conda/feedstock_root/build_artifacts/networkx_1598210780226/work
    nibabel==4.0.2
    nilearn==0.9.2
    ninja==1.10.2.4
    nltk==3.7
    nnabla==1.31.0
    nose==1.3.7
    notebook @ file:///home/conda/feedstock_root/build_artifacts/notebook_1654636967533/work
    notebook-executor @ file:///opt/conda/conda-bld/dlenv-base_1656637564616/work/packages/notebook_executor
    notebook-shim @ file:///home/conda/feedstock_root/build_artifacts/notebook-shim_1646330736330/work
    numba @ file:///home/conda/feedstock_root/build_artifacts/numba_1655473306076/work
    numexpr==2.8.3
    numpy==1.21.6
    oauth2client==4.1.3
    oauthlib @ file:///home/conda/feedstock_root/build_artifacts/oauthlib_1643507977997/work
    odfpy==1.4.1
    olefile==0.46
    onnx==1.12.0
    opencv-contrib-python==4.5.4.60
    opencv-python==4.5.4.60
    opencv-python-headless==4.5.4.60
    openpyxl==3.0.10
    openslide-python==1.2.0
    opt-einsum==3.3.0
    optax==0.1.3
    optuna==3.0.3
    orderedmultidict==1.0.1
    orjson==3.7.5
    ortools==9.4.1874
    osmnx==1.1.1
    overrides==6.1.0
    packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1637239678211/work
    palettable==3.3.0
    pandarallel==1.6.3
    pandas==1.3.5
    pandas-datareader==0.10.0
    pandas-profiling @ file:///home/conda/feedstock_root/build_artifacts/pandas-profiling_1632836752399/work
    pandas-summary==0.2.0
    pandasql==0.7.3
    pandocfilters @ file:///home/conda/feedstock_root/build_artifacts/pandocfilters_1631603243851/work
    panel==0.14.0
    papermill @ file:///home/conda/feedstock_root/build_artifacts/papermill_1642949624634/work
    param==1.12.2
    parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1638334955874/work
    parsy==1.4.0
    partd==1.3.0
    path==16.5.0
    path.py==12.5.0
    pathos==0.2.9
    pathspec @ file:///home/conda/feedstock_root/build_artifacts/pathspec_1626613672358/work
    pathtools==0.1.2
    pathy==0.6.2
    patsy @ file:///home/conda/feedstock_root/build_artifacts/patsy_1632667180946/work
    pbr==5.10.0
    pdf2image==1.16.0
    PDPbox @ git+https://github.com/SauceCat/PDPbox@b022a0aabcc6dbe2440244bf48d08fbb6ecdaf2d
    pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1602535608087/work
    phik @ file:///home/conda/feedstock_root/build_artifacts/phik_1647910144007/work
    pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1602536217715/work
    Pillow @ file:///home/conda/feedstock_root/build_artifacts/pillow_1653922730606/work
    platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1645298319244/work
    plotly==5.10.0
    plotly-express==0.4.1
    plotnine==0.8.0
    pluggy==1.0.0
    pointpats==2.2.0
    polyglot==16.7.4
    pooch==1.6.0
    portalocker==2.6.0
    pox==0.3.1
    ppca==0.0.4
    ppft==1.7.6.5
    preprocessing==0.1.13
    preshed==3.0.8
    prettytable @ file:///home/conda/feedstock_root/build_artifacts/prettytable_1651787307815/work
    progressbar2==4.1.1
    prometheus-client @ file:///home/conda/feedstock_root/build_artifacts/prometheus_client_1649447152425/work
    promise==2.3
    prompt-toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1656332401605/work
    pronouncing==0.2.0
    prophet==1.1.1
    proto-plus==1.20.6
    protobuf==3.19.4
    psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1653089169272/work
    ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
    pudb==2022.1.2
    PuLP==2.6.0
    py==1.11.0
    py-lz4framed==0.14.0
    py-stringmatching==0.4.2
    py-stringsimjoin==0.3.2
    py4j==0.10.9.7
    pyaml==21.10.1
    PyArabic==0.6.15
    pyarrow==8.0.0
    pyasn1==0.4.8
    pyasn1-modules==0.2.7
    PyAstronomy==0.18.0
    pybind11==2.10.0
    pyclipper==1.3.0.post3
    pycodestyle==2.8.0
    pycosat==0.6.3
    pycountry==22.3.5
    pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
    pycrypto==2.6.1
    pyct==0.4.8
    pydantic==1.8.2
    pydash==5.1.1
    pydegensac==0.1.2
    pyDeprecate==0.3.2
    pydicom==2.3.0
    pydocstyle==6.1.1
    pydot==1.4.2
    pydub==0.25.1
    pyemd==0.5.1
    pyerfa==2.0.0.1
    pyexcel-io==0.6.6
    pyexcel-ods==0.6.0
    pyfasttext==0.4.6
    pyflakes==2.4.0
    pygeos==0.13
    Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1650904496387/work
    PyJWT @ file:///home/conda/feedstock_root/build_artifacts/pyjwt_1652398519695/work
    pykalman==0.9.5
    pyLDAvis==3.2.2
    pylint==2.15.4
    pymc3==3.11.5
    PyMeeus==0.5.11
    pymongo==3.12.3
    Pympler==1.0.1
    pynndescent==0.5.7
    pyocr==0.8.3
    pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1643496850550/work
    pyparsing @ file:///home/conda/feedstock_root/build_artifacts/pyparsing_1652235407899/work
    pyPdf==1.13
    pyperclip==1.8.2
    PyPrind==2.11.3
    pyproj @ file:///home/conda/feedstock_root/build_artifacts/pyproj_1623801868210/work
    pyrsistent @ file:///home/conda/feedstock_root/build_artifacts/pyrsistent_1649013358450/work
    pysal==2.6.0
    pysentimiento==0.4.2
    pyshp @ file:///home/conda/feedstock_root/build_artifacts/pyshp_1659002966020/work
    PySocks @ file:///tmp/build/80754af9/pysocks_1594394576006/work
    pytesseract==0.3.10
    pytest==7.1.3
    python-bidi==0.4.2
    python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1626286286081/work
    python-dotenv==0.21.0
    python-igraph==0.10.2
    python-Levenshtein==0.20.7
    python-louvain==0.16
    python-lsp-jsonrpc==1.0.0
    python-lsp-server==1.5.0
    python-slugify @ file:///home/conda/feedstock_root/build_artifacts/python-slugify_1651150815876/work
    python-utils==3.3.3
    pythreejs==2.4.1
    pytoolconfig==1.2.2
    pytorch-ignite==0.4.10
    pytorch-lightning==1.7.7
    pytz @ file:///home/conda/feedstock_root/build_artifacts/pytz_1647961439546/work
    pytz-deprecation-shim==0.1.0.post0
    pyu2f @ file:///home/conda/feedstock_root/build_artifacts/pyu2f_1604248910016/work
    PyUpSet==0.1.1.post7
    pyviz-comms==2.2.1
    PyWavelets @ file:///home/conda/feedstock_root/build_artifacts/pywavelets_1649616401885/work
    PyYAML @ file:///home/conda/feedstock_root/build_artifacts/pyyaml_1648757092905/work
    pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1656183559639/work
    qgrid==1.3.1
    qtconsole==5.3.1
    QtPy==2.1.0
    quantecon==0.5.3
    quantities==0.13.0
    qudida==0.0.4
    quilt3==5.0.0
    randomgen==1.23.1
    rapidfuzz==2.11.1
    rasterio==1.2.10
    rasterstats==0.17.0
    ray==2.0.0
    regex==2021.11.10
    requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1656534056640/work
    requests-futures==1.0.0
    requests-oauthlib @ file:///home/conda/feedstock_root/build_artifacts/requests-oauthlib_1643557462909/work
    resampy==0.4.2
    responses==0.18.0
    retrying==1.3.3
    rgf-python==3.12.0
    rich==12.1.0
    rope==1.3.0
    rsa @ file:///home/conda/feedstock_root/build_artifacts/rsa_1637781155505/work
    Rtree==1.0.1
    ruamel-yaml-conda @ file:///tmp/build/80754af9/ruamel_yaml_1616016701961/work
    rvlib==0.0.6
    s2sphere==0.2.5
    s3fs==2022.8.2
    s3transfer==0.6.0
    sacremoses==0.0.53
    scattertext==0.1.7
    scikit-image==0.19.3
    scikit-learn @ file:///home/conda/feedstock_root/build_artifacts/scikit-learn_1640464152916/work
    scikit-learn-intelex==2021.6.3
    scikit-multilearn==0.2.0
    scikit-optimize==0.9.0
    scikit-plot==0.3.7
    scikit-surprise==1.1.1
    scipy @ file:///home/conda/feedstock_root/build_artifacts/scipy_1637806658031/work
    seaborn @ file:///home/conda/feedstock_root/build_artifacts/seaborn-split_1629095986539/work
    SecretStorage==3.3.2
    segregation==2.3.1
    semver==2.13.0
    Send2Trash @ file:///home/conda/feedstock_root/build_artifacts/send2trash_1628511208346/work
    sentencepiece==0.1.97
    sentry-sdk==1.9.10
    setproctitle==1.3.2
    setuptools-git==1.2
    shap==0.41.0
    Shapely @ file:///home/conda/feedstock_root/build_artifacts/shapely_1635194349843/work
    shortuuid==1.0.9
    simpervisor @ file:///home/conda/feedstock_root/build_artifacts/simpervisor_1609865618711/work
    SimpleITK==2.2.0
    simplejson==3.17.6
    six==1.15.0
    sklearn==0.0
    sklearn-contrib-py-earth @ git+https://github.com/scikit-learn-contrib/py-earth.git@dde5f899255411a7b9cbbabf93a817eff4b02e5e
    sklearn-pandas==2.2.0
    slicer==0.0.7
    smart-open==5.2.1
    smhasher==0.150.1
    smmap @ file:///home/conda/feedstock_root/build_artifacts/smmap_1611376390914/work
    sniffio @ file:///home/conda/feedstock_root/build_artifacts/sniffio_1648819180181/work
    snowballstemmer==2.2.0
    snuggs==1.4.7
    sortedcontainers==2.4.0
    soundfile==0.11.0
    soupsieve @ file:///home/conda/feedstock_root/build_artifacts/soupsieve_1638550740809/work
    spacy==3.3.1
    spacy-legacy==3.0.10
    spacy-loggers==1.0.3
    spaghetti==1.6.5
    spectral==0.23.1
    spglm==1.0.8
    sphinx-rtd-theme==0.2.4
    spint==1.0.7
    splot==1.1.5.post1
    spopt==0.4.1
    spreg==1.2.4
    spvcm==0.3.0
    SQLAlchemy @ file:///home/conda/feedstock_root/build_artifacts/sqlalchemy_1656115921048/work
    sqlparse @ file:///home/conda/feedstock_root/build_artifacts/sqlparse_1631317292236/work
    squarify==0.4.3
    srsly==2.4.5
    starlette==0.20.4
    statsmodels @ file:///home/conda/feedstock_root/build_artifacts/statsmodels_1654787101575/work
    stemming==1.0.1
    stevedore==3.5.1
    stop-words==2018.7.23
    stopit==1.1.2
    stumpy==1.11.1
    sympy==1.10.1
    tables==3.7.0
    tabulate==0.9.0
    tangled-up-in-unicode @ file:///home/conda/feedstock_root/build_artifacts/tangled-up-in-unicode_1620720635379/work
    tbb==2021.7.0
    tblib==1.7.0
    tenacity @ file:///home/conda/feedstock_root/build_artifacts/tenacity_1626090218611/work
    tensorboard==2.10.1
    tensorboard-data-server==0.6.1
    tensorboard-plugin-profile==2.4.0
    tensorboard-plugin-wit==1.8.1
    tensorboardX==2.5.1
    tensorflow @ file:///opt/conda/conda-bld/dlenv-tf-2-6-cpu_1656642848658/work/tensorflow-2.6.4-cp37-cp37m-linux_x86_64.whl
    tensorflow-addons==0.14.0
    tensorflow-cloud==0.1.14
    tensorflow-datasets==4.3.0
    tensorflow-decision-forests==0.2.0
    tensorflow-estimator==2.6.0
    tensorflow-gcs-config==2.6.0
    tensorflow-hub==0.12.0
    tensorflow-io==0.21.0
    tensorflow-metadata==1.9.0
    tensorflow-probability==0.14.1
    tensorflow-serving-api==2.9.0
    tensorflow-transform==1.9.0
    tensorpack==0.11
    termcolor==1.1.0
    terminado @ file:///home/conda/feedstock_root/build_artifacts/terminado_1652790603075/work
    testpath @ file:///home/conda/feedstock_root/build_artifacts/testpath_1645693042223/work
    text-unidecode==1.3
    textblob==0.17.1
    texttable==1.6.4
    textwrap3==0.9.2
    tfx-bsl==1.9.0
    Theano==1.0.5
    Theano-PyMC==1.1.2
    thinc==8.0.17
    threadpoolctl @ file:///home/conda/feedstock_root/build_artifacts/threadpoolctl_1643647933166/work
    tifffile==2021.11.2
    tinycss2 @ file:///home/conda/feedstock_root/build_artifacts/tinycss2_1637612658783/work
    tobler==0.9.0
    tokenizers==0.10.3
    toml @ file:///home/conda/feedstock_root/build_artifacts/toml_1604308577558/work
    tomli @ file:///home/conda/feedstock_root/build_artifacts/tomli_1644342247877/work
    tomlkit==0.11.5
    toolz==0.11.2
    torch==1.11.0+cpu
    torchaudio==0.11.0+cpu
    torchmetrics==0.10.0
    torchtext==0.12.0
    torchvision==0.12.0+cpu
    tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1648827244717/work
    TPOT==0.11.7
    tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1649051611147/work
    traceml==1.0.3
    traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1655411388954/work
    traittypes==0.2.1
    transformers==4.13.0
    trueskill==0.4.5
    tsfresh==0.19.0
    typed-ast @ file:///home/conda/feedstock_root/build_artifacts/typed-ast_1653226021340/work
    typeguard==2.13.3
    typer==0.4.2
    typing-utils==0.1.0
    typing_extensions==4.4.0
    tzdata==2022.5
    tzlocal==4.2
    ujson @ file:///home/conda/feedstock_root/build_artifacts/ujson_1653057311506/work
    umap-learn==0.5.3
    unicodedata2 @ file:///home/conda/feedstock_root/build_artifacts/unicodedata2_1649111917568/work
    Unidecode @ file:///home/conda/feedstock_root/build_artifacts/unidecode_1646918762405/work
    update-checker==0.18.0
    uritemplate==3.0.1
    urllib3==1.26.12
    urwid==2.1.2
    urwid-readline==0.13
    uvicorn==0.18.3
    uvloop==0.17.0
    vaex==4.14.0
    vaex-astro==0.9.2
    vaex-core==4.14.0
    vaex-hdf5==0.13.0
    vaex-jupyter==0.8.0
    vaex-ml==0.18.0
    vaex-server==0.8.1
    vaex-viz==0.5.4
    vecstack==0.4.0
    virtualenv==20.15.1
    visions @ file:///home/conda/feedstock_root/build_artifacts/visions_1632831254311/work
    vowpalwabbit==9.5.0
    vtk==9.2.2
    Wand==0.6.10
    wandb==0.12.21
    wasabi==0.10.1
    watchfiles==0.17.0
    wavio==0.0.4
    wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1600965781394/work
    webencodings==0.5.1
    websocket-client @ file:///home/conda/feedstock_root/build_artifacts/websocket-client_1655796432389/work
    websockets==10.3
    Werkzeug==2.2.2
    wfdb==4.0.0
    whatthepatch==1.0.2
    widgetsnbextension==3.6.1
    witwidget==1.8.0
    woodwork==0.16.4
    Wordbatch==1.4.9
    wordcloud==1.8.2.2
    wordsegment==1.3.1
    wrapt==1.12.1
    wslink==1.8.4
    xarray==0.20.2
    xarray-einstats==0.2.2
    xgboost==1.6.2
    xvfbwrapper==0.2.9
    xxhash==3.0.0
    xyzservices==2022.9.0
    yacs==0.1.8
    yapf==0.32.0
    yarl @ file:///home/conda/feedstock_root/build_artifacts/yarl_1648966511831/work
    yellowbrick==1.5
    zict==2.2.0
    zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1649012893348/work
    

    Additional context

    Full stack-trace:

    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    /opt/conda/lib/python3.7/site-packages/transformers/utils/import_utils.py in _get_module(self, module_name)
    
    /opt/conda/lib/python3.7/importlib/__init__.py in import_module(name, package)
        126             level += 1
    --> 127     return _bootstrap._gcd_import(name[level:], package, level)
        128 
    
    /opt/conda/lib/python3.7/importlib/_bootstrap.py in _gcd_import(name, package, level)
    
    /opt/conda/lib/python3.7/importlib/_bootstrap.py in _find_and_load(name, import_)
    
    /opt/conda/lib/python3.7/importlib/_bootstrap.py in _find_and_load_unlocked(name, import_)
    
    /opt/conda/lib/python3.7/importlib/_bootstrap.py in _load_unlocked(spec)
    
    /opt/conda/lib/python3.7/importlib/_bootstrap_external.py in exec_module(self, module)
    
    /opt/conda/lib/python3.7/importlib/_bootstrap.py in _call_with_frames_removed(f, *args, **kwds)
    
    /opt/conda/lib/python3.7/site-packages/transformers/trainer.py in <module>
         63 from .debug_utils import DebugOption, DebugUnderflowOverflow
    ---> 64 from .deepspeed import deepspeed_init, deepspeed_reinit, is_deepspeed_zero3_enabled
         65 from .dependency_versions_check import dep_version_check
    
    ImportError: cannot import name 'deepspeed_reinit' from 'transformers.deepspeed' (/opt/conda/lib/python3.7/site-packages/transformers/deepspeed.py)
    
    The above exception was the direct cause of the following exception:
    
    RuntimeError                              Traceback (most recent call last)
    /tmp/ipykernel_27/1736218227.py in <module>
          2 get_ipython().system('pip install transformers -q')
          3 # import pysentimiento
    ----> 4 from pysentimiento import create_analyzer
          5 # print(pysentimiento.__version__)
          6 # analyzer = create_analyzer(task="sentiment", lang="en")
    
    /opt/conda/lib/python3.7/site-packages/pysentimiento/__init__.py in <module>
          1 from .metrics import compute_metrics
    ----> 2 from .analyzer import create_analyzer
    
    /opt/conda/lib/python3.7/site-packages/pysentimiento/analyzer.py in <module>
          1 import torch
          2 from .preprocessing import preprocess_tweet
    ----> 3 from transformers import (
          4     AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification,
          5     DataCollatorWithPadding,
    
    /opt/conda/lib/python3.7/importlib/_bootstrap.py in _handle_fromlist(module, fromlist, import_, recursive)
    
    /opt/conda/lib/python3.7/site-packages/transformers/utils/import_utils.py in __getattr__(self, name)
    
    /opt/conda/lib/python3.7/site-packages/transformers/utils/import_utils.py in _get_module(self, module_name)
    
    RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback):
    cannot import name 'deepspeed_reinit' from 'transformers.deepspeed' (/opt/conda/lib/python3.7/site-packages/transformers/deepspeed.py)
    
    opened by maifeeulasad 1
  • Add hashtag segmentation with hashformers

    Add hashtag segmentation with hashformers

    Closes #23 .

    Usage:

    from pysentimiento.preprocessing import preprocess_tweet
    from pysentimiento.segmenter import create_segmenter
    
    # Handles hashtags
    segmenter = create_segmenter(lang="es", batch_size=1000)
    preprocess_tweet("esto es #UnaGenialidad", segmenter=segmenter)
    # "esto es una genialidad"
    

    create_segmenter(lang="en") or calling a GPT-2 model directly ( e.g. create_segmenter(model_name="gpt2-large") ) are also implemented. Calling preprocess_tweet without a segmenter will run the default camel case segmenter.

    I have also modified preprocess_tweet to handle both strings and lists of strings.

    P.S.: If you are going to evaluate this segmenter on downstream tasks, make sure you also test create_segmenter(lang="en") on Spanish text. This returns a distilgpt2 which has achieved good results at segmenting hashtags in other languages. Model size doesn't seem to matter much ( distilgpt2 will usually give similar or even better results than gpt2 or gpt2-large ).

    opened by ruanchaves 9
  • Package dependency torch version 1.9.0+

    Package dependency torch version 1.9.0+

    Not really an issue, but we use the LTS version of torch, which is currently 1.8.2, but pysentimiento requires newer versions of torch. Is this solvable from your end perhaps? We just use pip's --use-deprecated=legacy-resolver to get around this but we were curious to see if staying on torch 1.8.2 will cause some issues for this library.

    Pretty neat package btw, thanks a lot for maintaining it ❤️

    opened by anthony2261 1
  • [Feature Proposal] Use hashformers for hashtag segmentation

    [Feature Proposal] Use hashformers for hashtag segmentation

    preprocess_tweet currently uses a very simple camel case regex to handle hashtag preprocessing. This will obviously fail for most hashtags.

    I propose to integrate hashformers with pysentimiento. Here are a few reasons to do this:

    • Hashformers has been proven by two research groups to be the current state-of-the-art for hashtag segmentation.
    • It can instantly work with Spanish, English or any other language.
    • It does not add any significant extra dependencies to the library.
    • It is very easy to integrate.

    If this seems like a good idea to the maintainers of this repository ( @finiteautomata ), I can draft an initial PR for this feature.

    opened by ruanchaves 6
Owner
null
C.J. Hutto 2.8k Feb 18, 2021
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 1, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

null 14 Jan 3, 2023
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

null 186 Dec 24, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels without pre-existing datasets. The only available option is often to collect and annotate texts by hand, which is expensive and time-consuming.

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries.

THUNLP 2.3k Jan 8, 2023
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

null 2 Dec 12, 2021
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch >= 1.10 torchtext >= 0.11.0 sklear

null 0 Jan 5, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 7.5k Feb 17, 2021
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 137 Feb 1, 2021
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 8, 2021
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021