[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

Related tags

Deep Learning SSUL
Overview

SSUL - Official Pytorch Implementation (NeurIPS 2021)

SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning
Sungmin Cha1,2*, Beomyoung Kim3*, YoungJoon Yoo2,3, Taesup Moon1
* Equal contribution

1 Department of Electrical and Computer Engineering, Seoul National University
2 NAVER AI Lab
3 Face, NAVER Clova

NeurIPS 2021

Paper

Abtract

This paper introduces a solid state-of-the-art baseline for a class-incremental semantic segmentation (CISS) problem. While the recent CISS algorithms utilize variants of the knowledge distillation (KD) technique to tackle the problem, they failed to fully address the critical challenges in CISS causing the catastrophic forgetting; the semantic drift of the background class and the multi-label prediction issue. To better address these challenges, we propose a new method, dubbed SSUL-M (Semantic Segmentation with Unknown Label with Memory), by carefully combining techniques tailored for semantic segmentation. Specifically, we claim three main contributions. (1) defining unknown classes within the background class to help to learn future classes (help plasticity), (2) freezing backbone network and past classifiers with binary cross-entropy loss and pseudo-labeling to overcome catastrophic forgetting (help stability), and (3) utilizing tiny exemplar memory for the first time in CISS to improve both plasticity and stability. The extensively conducted experiments show the effectiveness of our method, achieving significantly better performance than the recent state-of-the-art baselines on the standard benchmark datasets. Furthermore, we justify our contributions with thorough ablation analyses and discuss different natures of the CISS problem compared to the traditional class-incremental learning targeting classification.

Experimental Results (mIoU all)

Method VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 19-1 (2 tasks) VOC 15-5 (2 tasks) VOC 5-1 (16 tasks) VOC 2-1 (19 tasks)
MiB 12.65 29.29 46.71 69.15 70.08 10.03 9.88
PLOP 30.45 54.64 18.68 73.54 70.09 6.46 4.47
SSUL 59.25 67.61 56.89 75.44 71.22 48.65 38.32
SSUL-M 64.12 71.37 58.37 76.49 73.02 55.11 44.74
Method ADE 100-5 (11 tasks) ADE 100-10 (6 tasks) ADE 100-50 (2 tasks) ADE 50-50 (3 tasks)
MiB 25.96 29.24 32.79 29.31
PLOP 28.75 31.59 32.94 30.40
SSUL 32.48 33.10 33.58 29.56
SSUL-M 34.56 34.46 34.37 29.77

Getting Started

Requirements

  • torch>=1.7.1
  • torchvision>=0.8.2
  • numpy
  • pillow
  • scikit-learn
  • tqdm
  • matplotlib

Datasets

data_root/
    --- VOC2012/
        --- Annotations/
        --- ImageSet/
        --- JPEGImages/
        --- SegmentationClassAug/
        --- saliency_map/
    --- ADEChallengeData2016
        --- annotations
            --- training
            --- validation
        --- images
            --- training
            --- validation

Download SegmentationClassAug and saliency_map

Class-Incremental Segmentation Segmentation on VOC 2012

DATA_ROOT=your_dataset_root_path
DATASET=voc
TASK=15-1 # [15-1, 10-1, 19-1, 15-5, 5-3, 5-1, 2-1, 2-2]
EPOCH=50
BATCH=32
LOSS=bce_loss
LR=0.01
THRESH=0.7
MEMORY=100 # [0 (for SSUL), 100 (for SSUL-M)]

python main.py --data_root ${DATA_ROOT} --model deeplabv3_resnet101 --gpu_id 0,1 --crop_val --lr ${LR} --batch_size ${BATCH} --train_epoch ${EPOCH} --loss_type ${LOSS} --dataset ${DATASET} --task ${TASK} --overlap --lr_policy poly --pseudo --pseudo_thresh ${THRESH} --freeze --bn_freeze --unknown --w_transfer --amp --mem_size ${MEMORY}

Class-Incremental Segmentation Segmentation on ADE20K

DATA_ROOT=your_dataset_root_path
DATASET=ade
TASK=100-5 # [100-5, 100-10, 100-50, 50-50]
EPOCH=100
BATCH=24
LOSS=bce_loss
LR=0.05
THRESH=0.7
MEMORY=300 # [0 (for SSUL), 300 (for SSUL-M)]

python main.py --data_root ${DATA_ROOT} --model deeplabv3_resnet101 --gpu_id 0,1 --crop_val --lr ${LR} --batch_size ${BATCH} --train_epoch ${EPOCH} --loss_type ${LOSS} --dataset ${DATASET} --task ${TASK} --overlap --lr_policy warm_poly --pseudo --pseudo_thresh ${THRESH} --freeze --bn_freeze --unknown --w_transfer --amp --mem_size ${MEMORY}

Qualitative Results

Acknowledgement

Our implementation is based on these repositories: DeepLabV3Plus-Pytorch, Torchvision.

License

SSUL
Copyright 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
You might also like...
The source code of CVPR 2019 paper
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning
A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

 Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Comments
  • How much time does it take for an experiment?

    How much time does it take for an experiment?

    Thank you for your amazing work. How much time does it take for a typical experiment (say 15+5) on VOC? It would be very kind of you if you could share this, as this might help people who are just starting along this line of research.

    Thanks, Joseph

    opened by JosephKJ 2
  • DiceLoss missed in loss.py

    DiceLoss missed in loss.py

    Thanks you for sharing such a excellent work. But when I try to run the model, it seems that the authors forget to define DiceLoss in /utils/loss.py, which is imported in the /utils/init.py.

    opened by YBIO 1
  • Regarding final classifier layer implementation

    Regarding final classifier layer implementation

    Hello, Thanks for the well documented code.

    I have a query regarding the final classifier layer used in SSUL implementation and the architecture mentioned in the paper. The paper states that the final layer consists of 1*1 filters, one for each output class and in incremental steps, only the 1*1 filters are learned. But in the code, the classifier layer is as follows: self.head = nn.ModuleList( [ nn.Sequential( nn.Conv2d(256, 256, 3, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, c, 1) ) for c in num_classes] ) This entire head is learned for each new set of classes and the weight transfer is done for the entire head as well.

    Can you clarify this ? Can I reproduce the results using only the final conv2d layer like self.head = [nn.Conv2d(256, c, 1) for c in num_classes] ?

    opened by dipamgoswami 0
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 1, 2023
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 2, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

null 33 Nov 27, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 1, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 9, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 7, 2022