Adaptation through prediction: multisensory active inference torque control

Overview

Adaptation through prediction: multisensory active inference torque control

Submitted to IEEE Transactions on Cognitive and Developmental Systems

Abstract: Adaptation to external and internal changes is major for robotic systems in uncertain environments. Here we present a novel multisensory active inference torque controller for industrial arms that shows how prediction can be used to resolve adaptation. Our controller, inspired by the predictive brain hypothesis, improves the capabilities of current active inference approaches by incorporating learning and multimodal integration of low and high-dimensional sensor inputs (e.g., raw images) while simplifying the architecture. We performed a systematic evaluation of our model on a 7DoF Franka Emika Panda robot arm by comparing its behavior with previous active inference baselines and classic controllers, analyzing both qualitatively and quantitatively adaptation capabilities and control accuracy. Results showed improved control accuracy in goal-directed reaching with high noise rejection due to multimodal filtering, and adaptability to dynamical inertial changes, elasticity constraints and human disturbances without the need to relearn the model nor parameter retuning.

User guide:

Hardware Required:

  • Franka Emika Panda robot arm
  • Camera

Requirements

  • ROS (melodic)
  • pytorch 1.7.0
  • cv2
  • PyRobot
  • sklearn
  • seaborn
  • Franka ROS
  • Camera driver

Installation

Once the dependencies are installed, a catkin workspace has to be created. To do it:

  • Create a catkin_ws folder: $ mkdir -p catkin_ws/src
  • Move to the folder: $ cd catkin_ws/src
  • Clone the repository $ git clone https://github.com/Cmeo97/Adaptation-through-prediction-MAIC
  • Clone franka interface repository
  • Clone used camera driver repository
  • Move back to catkin_ws: $ cd ..
  • Build the workspace: $ catkin_make
  • Source: $ source devel/setup.bash

remember to change the subscribers topic names based on your publishers names.

Running the code

To run the controller:

  • After building and sorcing the workspace you have to launch the franka interface which has to publish the joint states.

  • run the camera launcher

  • Go to the controller folder: $ cd src/MAIC/src

  • You have to run the camera node, which subscribe images and publish them for the controller: $ python2.7 camera_launcher.py

  • then, in another terminal, run the controller: $ python MAIC-#.py (# can be either GP or VAE)

  • To run the Brain simulation run: $ python Brain_Simulation.py

You might also like...
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images. The code for our paper
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

A modular active learning framework for Python
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

Owner
Cristian Meo
Cristian Meo
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 6, 2023
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

null 75 Dec 16, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

null 1 Dec 25, 2021
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

null 82 Nov 29, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 3, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 8, 2022
LBK 20 Dec 2, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 6, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 4, 2022