Code Repository for The Kaggle Book, Published by Packt Publishing

Overview

The Kaggle Book

Data analysis and machine learning for competitive data science

Code Repository for The Kaggle Book, Published by Packt Publishing

"Luca and Konradˈs book helps make Kaggle even more accessible. They are both top-ranked users and well-respected members of the Kaggle community. Those who complete this book should expect to be able to engage confidently on Kaggle – and engaging confidently on Kaggle has many rewards." — Anthony Goldbloom, Kaggle Founder & CEO

Key Features

  • Learn how Kaggle works and how to make the most of competitions from two expert Kaggle Grandmasters
  • Sharpen your modeling skills with ensembling, feature engineering, adversarial validation, AutoML, transfer learning, and techniques for parameter tuning
  • Challenge yourself with problems regarding tabular data, vision, natural language as well as simulation and optimization
  • Discover tips, tricks, and best practices for getting great results on Kaggle and becoming a better data scientist
  • Read interviews with 31 Kaggle Masters and Grandmasters telling about their experience and tips

Get a step ahead of your competitors with a concise collection of smart data handling and modeling techniques

Getting started

You can run these notebooks on cloud platforms like Kaggle Colab or your local machine. Note that most chapters require a GPU even TPU sometimes to run in a reasonable amount of time, so we recommend one of the cloud platforms as they come pre-installed with CUDA.

Running on a cloud platform

To run these notebooks on a cloud platform, just click on one of the badges (Colab or Kaggle) in the table below. The code will be reproduced from Github directly onto the choosen platform (you may have to add the necessary data before running it). Alternatively, we also provide links to the fully working original notebook on Kaggle that you can copy and immediately run.

no Chapter Notebook Colab Kaggle
05 Competition Tasks and Metrics meta_kaggle Open In Colab Kaggle
06 Designing Good Validation adversarial-validation-example Open In Colab Kaggle
07 Modeling for Tabular Competitions interesting-eda-tsne-umap Open In Colab Kaggle
meta-features-and-target-encoding Open In Colab Kaggle
really-not-missing-at-random Open In Colab Kaggle
tutorial-feature-selection-with-boruta-shap Open In Colab Kaggle
08 Hyperparameter Optimization basic-optimization-practices Open In Colab Kaggle
hacking-bayesian-optimization-for-dnns Open In Colab Kaggle
hacking-bayesian-optimization Open In Colab Kaggle
kerastuner-for-imdb Open In Colab Kaggle
optuna-bayesian-optimization Open In Colab Kaggle
scikit-optimize-for-lightgbm Open In Colab Kaggle
tutorial-bayesian-optimization-with-lightgbm Open In Colab Kaggle
09 Ensembling with Blending and Stacking Solutions ensembling Open In Colab Kaggle
10 Modeling for Computer Vision augmentations-examples Open In Colab Kaggle
images-classification Open In Colab Kaggle
prepare-annotations Open In Colab Kaggle
segmentation-inference Open In Colab Kaggle
segmentation Open In Colab Kaggle
object-detection-yolov5 Open In Colab Kaggle
11 Modeling for NLP nlp-augmentations4 Open In Colab Kaggle
nlp-augmentation1 Open In Colab Kaggle
qanswering Open In Colab Kaggle
sentiment-extraction Open In Colab Kaggle
12 Simulation and Optimization Competitions connectx Open In Colab Kaggle
mab-santa Open In Colab Kaggle
rps-notebook1 Open In Colab Kaggle

Book Description

Millions of data enthusiasts from around the world compete on Kaggle, the most famous data science competition platform of them all. Participating in Kaggle competitions is a surefire way to improve your data analysis skills, network with the rest of the community, and gain valuable experience to help grow your career.

The first book of its kind, Data Analysis and Machine Learning with Kaggle assembles the techniques and skills you’ll need for success in competitions, data science projects, and beyond. Two masters of Kaggle walk you through modeling strategies you won’t easily find elsewhere, and the tacit knowledge they’ve accumulated along the way. As well as Kaggle-specific tips, you’ll learn more general techniques for approaching tasks based on image data, tabular data, textual data, and reinforcement learning. You’ll design better validation schemes and work more comfortably with different evaluation metrics.

Whether you want to climb the ranks of Kaggle, build some more data science skills, or improve the accuracy of your existing models, this book is for you.

What you will learn

  • Get acquainted with Kaggle and other competition platforms
  • Make the most of Kaggle Notebooks, Datasets, and Discussion forums
  • Understand different modeling tasks including binary and multi-class classification, object detection, NLP (Natural Language Processing), and time series
  • Design good validation schemes, learning about k-fold, probabilistic, and adversarial validation
  • Get to grips with evaluation metrics including MSE and its variants, precision and recall, IoU, mean average precision at k, as well as never-before-seen metrics
  • Handle simulation and optimization competitions on Kaggle
  • Create a portfolio of projects and ideas to get further in your career

Who This Book Is For

This book is suitable for Kaggle users and data analysts/scientists with at least a basic proficiency in data science topics and Python who are trying to do better in Kaggle competitions and secure jobs with tech giants. At the time of completion of this book, there are 96,190 Kaggle novices (users who have just registered on the website) and 67,666 Kaggle contributors (users who have just filled in their profile) enlisted in Kaggle competitions. This book has been written with all of them in mind and with anyone else wanting to break the ice and start taking part in competitions on Kaggle and learning from them.

Table of Contents

Part 1

  1. Introducing Kaggle and Other Data Science Competitions
  2. Organizing Data with Datasets
  3. Working and Learning with Kaggle Notebooks
  4. Leveraging Discussion Forums

Part 2

  1. Competition Tasks and Metrics
  2. Designing Good Validation
  3. Modeling for Tabular Competitions
  4. Hyperparameter Optimization
  5. Ensembling with Blending and Stacking Solutions
  6. Modeling for Computer Vision
  7. Modeling for NLP
  8. Simulation and Optimization Competitions

Part 3

  1. Creating Your Portfolio of Projects and Ideas
  2. Finding New Professional Opportunities
You might also like...
🏅  The Most Comprehensive List of Kaggle Solutions and Ideas 🏅
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Winning solution of the Indoor Location & Navigation Kaggle competition
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

10th place solution for Google Smartphone Decimeter Challenge at kaggle.
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

A whale detector design for the Kaggle whale-detector challenge!
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Comments
  • Confusion matrix cells explanation

    Confusion matrix cells explanation

    On page 116, the cell descriptions (e.g. True Positive/Negative) are different from what Table 5.1 shows.

    • TP (true positives): These are located in the upper-left cell (should be lower-right cell), containing examples that have correctly been predicted as positive ones. • FP (false positives): These are located in the upper-right cell, containing examples that have been predicted as positive but are actually negative. • FN (false negatives): These are located in the lower-left cell, containing examples that have been predicted as negative but are actually positive. • TN (true negatives): These are located in the lower-right cell (should be upper-left cell), containing examples that have been correctly predicted as negative ones.

    bug 
    opened by provezano 2
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
BMW TechOffice MUNICH 148 Dec 21, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 1, 2023
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

null 88 Nov 22, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

null 1 Jun 2, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

null 44 Jun 27, 2022