Retail-Sim is python package to easily create synthetic dataset of retaile store.

Overview

Retailer's Sale Data Simulation

Retail-Sim is python package to easily create synthetic dataset of retaile store.

Simulation Model

Simulator consists of env, that generates retailer store simulated data.

Modelling PLAN

Products

Create fake products and relationship between them. Relationship between products (Cateogries, to be more precise) consists of "exchangability", "complementarity". Products have many attributes, such as

  • Base Price
  • Base Cost
  • Volume
  • Attractiveness
  • Category
  • Price elasticity
  • Relative Consumption rate
  • Loyalty

Volume implies how much satisfaction it provieds to the customer (How much of a need it subtracts). Volume is proportional to price, which can be set with vol_price_corr.

Products are discretely grouped by some category. Each category has attribute "consumption rate", "general trend", and "seasonal trend". In real life, products such as fresh food, tissues, bottled water would have high consumption rate. General trend is random linear-like trend, seasonal trend is trend of sales that has period of 1 year. In real life, product like icecream would have winter-oriented seasonal trend.

Customers

Every customer has random set of "needs". Just as real life, you might need shampoo, pair of scissors, and some spagetti souce(All of these are considered as one category) Customers will try to fill those needs. As it happens in real life, customers are encourged to buy the product that both satisfy the needs and has a high preference.

Product's Total Attractiveness

Every product comes with the Attractiveness attribute. If it has higher attractiveness, it is more likely to sell. However,

  • If the product is on discount, it will become more attractive.
  • If the product is on discount and it is advertised to be, it will become even more attractive.
  • If the product has high loyalty, it will have very high attractiveness to some customers.
  • There might be some general trend on the attractiveness.

Therefore during simulation, total attractiveness will be defined as:

$$Total = max(\text{Attractiveness} + \text{elasticity} * \text{discounted rate}, B(loyalty) * infty)$$

Customer's state transition

Customers will buy with n budget, where n is pareto distibuted among all customers. They will randomly pick a category depending on their current need distribution. After that, they will buy a product in that category, based on the products' total attractiveness. Buying that product will subtract the customer's need of that category by Volume's amount.

You might also like...
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

For making Tagtog annotation into csv dataset
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Statistical package in Python based on Pandas
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

A Python package for the mathematical modeling of infectious diseases via compartmental models
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenario.

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

sportsdataverse python package
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Owner
Corca AI
AI B2B Consulting Company
Corca AI
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

null 2 Nov 20, 2021
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 5, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

null 10k Jan 1, 2023
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 4, 2023
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
This is a python script to navigate and extract the FSD50K dataset

FSD50K navigator This is a script I use to navigate the sound dataset from FSK50K.

sweemeng 2 Nov 23, 2021
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 5, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 1, 2021