Fine-tune pretrained Convolutional Neural Networks with PyTorch

Overview

Fine-tune pretrained Convolutional Neural Networks with PyTorch.

PyPI CircleCI codecov.io

Features

  • Gives access to the most popular CNN architectures pretrained on ImageNet.
  • Automatically replaces classifier on top of the network, which allows you to train a network with a dataset that has a different number of classes.
  • Allows you to use images with any resolution (and not only the resolution that was used for training the original model on ImageNet).
  • Allows adding a Dropout layer or a custom pooling layer.

Supported architectures and models

From the torchvision package:

  • ResNet (resnet18, resnet34, resnet50, resnet101, resnet152)
  • ResNeXt (resnext50_32x4d, resnext101_32x8d)
  • DenseNet (densenet121, densenet169, densenet201, densenet161)
  • Inception v3 (inception_v3)
  • VGG (vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn)
  • SqueezeNet (squeezenet1_0, squeezenet1_1)
  • MobileNet V2 (mobilenet_v2)
  • ShuffleNet v2 (shufflenet_v2_x0_5, shufflenet_v2_x1_0)
  • AlexNet (alexnet)
  • GoogLeNet (googlenet)

From the Pretrained models for PyTorch package:

  • ResNeXt (resnext101_32x4d, resnext101_64x4d)
  • NASNet-A Large (nasnetalarge)
  • NASNet-A Mobile (nasnetamobile)
  • Inception-ResNet v2 (inceptionresnetv2)
  • Dual Path Networks (dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107)
  • Inception v4 (inception_v4)
  • Xception (xception)
  • Squeeze-and-Excitation Networks (senet154, se_resnet50, se_resnet101, se_resnet152, se_resnext50_32x4d, se_resnext101_32x4d)
  • PNASNet-5-Large (pnasnet5large)
  • PolyNet (polynet)

Requirements

  • Python 3.5+
  • PyTorch 1.1+

Installation

pip install cnn_finetune

Major changes:

Version 0.4

  • Default value for pretrained argument in make_model is changed from False to True. Now call make_model('resnet18', num_classes=10) is equal to make_model('resnet18', num_classes=10, pretrained=True)

Example usage:

Make a model with ImageNet weights for 10 classes

from cnn_finetune import make_model

model = make_model('resnet18', num_classes=10, pretrained=True)

Make a model with Dropout

model = make_model('nasnetalarge', num_classes=10, pretrained=True, dropout_p=0.5)

Make a model with Global Max Pooling instead of Global Average Pooling

import torch.nn as nn

model = make_model('inceptionresnetv2', num_classes=10, pretrained=True, pool=nn.AdaptiveMaxPool2d(1))

Make a VGG16 model that takes images of size 256x256 pixels

VGG and AlexNet models use fully-connected layers, so you have to additionally pass the input size of images when constructing a new model. This information is needed to determine the input size of fully-connected layers.

model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256))

Make a VGG16 model that takes images of size 256x256 pixels and uses a custom classifier

import torch.nn as nn

def make_classifier(in_features, num_classes):
    return nn.Sequential(
        nn.Linear(in_features, 4096),
        nn.ReLU(inplace=True),
        nn.Linear(4096, num_classes),
    )

model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256), classifier_factory=make_classifier)

Show preprocessing that was used to train the original model on ImageNet

>> model = make_model('resnext101_64x4d', num_classes=10, pretrained=True)
>> print(model.original_model_info)
ModelInfo(input_space='RGB', input_size=[3, 224, 224], input_range=[0, 1], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
>> print(model.original_model_info.mean)
[0.485, 0.456, 0.406]

CIFAR10 Example

See examples/cifar10.py file (requires PyTorch 1.1+).

Comments
  • Finetune on multi-GPUs

    Finetune on multi-GPUs

    I want to finetune the models on multi-GPUs, as following the office documents, I try this: model = make_model( args.model_name, pretrained=True, num_classes=len(classes), dropout_p=args.dropout_p, use_original_classifier=True ) model = nn.DataParallel(model) model = model.to(device)

    But get error as: Traceback (most recent call last): File "pg_cls.py", line 83, in <module> mean=model.original_model_info.mean, File "/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in __getattr__ type(self).__name__, name)) AttributeError: 'DataParallel' object has no attribute 'original_model_info'

    opened by Ken2yLiu 7
  • Error(s) in loading state_dict for Xception

    Error(s) in loading state_dict for Xception

    As your document, the xception has error from the issue https://github.com/Cadene/pretrained-models.pytorch/issues/62 I am using your API and xception network size of 256. I got the error as the below log. Could you tell me how could I fix it using your API This is my code

    model = make_model(
        'xception',
        pretrained=True,
        num_classes=100,
        dropout_p=0.2,
        input_size=(256, 256)
    )
    

    This is log

    RuntimeError: Error(s) in loading state_dict for Xception:
    	size mismatch for block1.rep.0.pointwise.weight: copying a param of torch.Size([128, 64, 1, 1]) from checkpoint, where the shape is torch.Size([128, 64]) in current model.
    	size mismatch for block1.rep.3.pointwise.weight: copying a param of torch.Size([128, 128, 1, 1]) from checkpoint, where the shape is torch.Size([128, 128]) in current model.
    	size mismatch for block2.rep.1.pointwise.weight: copying a param of torch.Size([256, 128, 1, 1]) from checkpoint, where the shape is torch.Size([256, 128]) in current model.
    	size mismatch for block2.rep.4.pointwise.weight: copying a param of torch.Size([256, 256, 1, 1]) from checkpoint, where the shape is torch.Size([256, 256]) in current model.
    	size mismatch for block3.rep.1.pointwise.weight: copying a param of torch.Size([728, 256, 1, 1]) from checkpoint, where the shape is torch.Size([728, 256]) in current model.
    	size mismatch for block3.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block4.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block4.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block4.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block5.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block5.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block5.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block6.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block6.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block6.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block7.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block7.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block7.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block8.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block8.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block8.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block9.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block9.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block9.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block10.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block10.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block10.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block11.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block11.rep.4.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block11.rep.7.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block12.rep.1.pointwise.weight: copying a param of torch.Size([728, 728, 1, 1]) from checkpoint, where the shape is torch.Size([728, 728]) in current model.
    	size mismatch for block12.rep.4.pointwise.weight: copying a param of torch.Size([1024, 728, 1, 1]) from checkpoint, where the shape is torch.Size([1024, 728]) in current model.
    	size mismatch for conv3.pointwise.weight: copying a param of torch.Size([1536, 1024, 1, 1]) from checkpoint, where the shape is torch.Size([1536, 1024]) in current model.
    	size mismatch for conv4.pointwise.weight: copying a param of torch.Size([2048, 1536, 1, 1]) from checkpoint, where the shape is torch.Size([2048, 1536]) in current model.
    
    opened by John1231983 5
  • Output size issue in alexnet and inception

    Output size issue in alexnet and inception

    AlexNet

    File "/lib/python3.6/site-packages/cnn_finetune/base.py", line 158, in calculate_classifier_in_features output = original_model.features(input_var)

    File "/lib/python3.6/site-packages/torch/nn/modules/pooling.py", line 143, in forward self.return_indices)

    File "/lib/python3.6/site-packages/torch/nn/functional.py", line 334, in max_pool2d ret = torch._C._nn.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)

    RuntimeError: Given input size: (256x1x1). Calculated output size: (256x0x0). Output size is too small at /opt/conda/conda-bld/pytorch_1518243271935/work/torch/lib/THNN/generic

    inceptionresnetv2 File "/lib/python3.6/site-packages/torch/nn/functional.py", line 90, in conv2d return f(input, weight, bias) RuntimeError: Given input size: (320, 1, 1). Calculated output size: (100, 0, 0). Output size is too small.

    inception_v3 line 90, in conv2d return f(input, weight, bias) RuntimeError: Given input size: (288, 1, 1). Calculated output size: (100, 0, 0). Output size is too small.

    inception_v4 Given input size: (384, 1, 1). Calculated output size: (100, 0, 0). Output size is too small.

    NB1. For AlexNet, changing the train_original_classifier to True (it was False in all the above) gave the following error: File "/lib/python3.6/site-packages/cnn_finetune/contrib/torchvision.py", line 93, in check_args 'For the original classifier '

    Exception: For the original classifier input_size value must be (224, 224)

    NB2. pre_trained_model = True in all the above

    opened by morawi 5
  • 'DPN' object has no attribute 'input_space'  Cifar10 example

    'DPN' object has no attribute 'input_space' Cifar10 example

    When setting the pre_trained_model to False, running 'dpns' gave the error 'DPN' object has no attribute 'input_space' in Cifar10 example. Except Resntes, all models gave this error. Using the attribute input_size=(32, 32) in make_model resolved the issue. [32x32] is the cifar10 resolution for each band.

    model = make_model(
        args.model_name,
        pretrained=True,
        num_classes=len(classes),
        dropout_p=args.dropout_p,
        input_size=(32, 32) 
    )
    

    However, this 'input_size' gave the error: ResNet' object has no attribute 'features' for all the Resnets. Thus, an if statement may be used to make-the-model. NB. For VGG* and squeezenet*, we need to provide the input-size in any case, Exception: You must provide input_size, e.g. make_model(vgg11, num_classes=10, pretrained=True, input_size=(224, 224)

    opened by morawi 5
  •  torchvision support `mobilenet` and `shufflenet`

    torchvision support `mobilenet` and `shufflenet`

    Hi, thanks for sharing your great work! I found that the torchvision has been updated, and it support mobilenet, shufflenet and so on. Will you update your repository?

    opened by liminn 3
  • How to replace last FC layer by 1x1 convolution?

    How to replace last FC layer by 1x1 convolution?

    Thanks for sharing a great API. I want to perform FCN (Fully convolutional network for semantic segmentation) using your API. It can be done by replacing the last Fully connected layer by 1x1 convolutional layer. Let's take resnet-18 as an example, how could I modify it to perform semantic segmentation. I think your classification example is good, and if you make an example for segmentation then it will be very good.

    opened by John1231983 3
  • Strange mean and std for inception_v4.

    Strange mean and std for inception_v4.

    Hi, and sorry if it's stupid question. But value for mean of inception_v4 equals [0.5, 0.5, 05]. And value for std of inception_v4 equals [0.5, 0.5, 05]. Transformation of tensor by Normalize with this values map 0 to -1 and 255 to 509. Is it normal?

    opened by KimalIsaev 2
  • illegal instruction (core dumped)

    illegal instruction (core dumped)

    It seems that the default res-net works. Any model that needs to be downloaded (vgg, alexnet) cause this exception. Some examples below:

    ~/pytorch-cnn-finetune/examples$ python cifar10.py --model-name vgg19 Downloading: "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth" to /home/ubuntu/.torch/models/vgg19-dcbb9e9d.pth 100%|‚574673361/574673361 [00:20<00:00, 28293664.65it/s] Illegal instruction (core dumped)

    ~/pytorch-cnn-finetune/examples$ python cifar10.py --model-name vgg16 Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /home/ubuntu/.torch/models/vgg16-397923af.pth 100%|553433881/553433881 [00:05<00:00, 98388620.83it/s] Illegal instruction (core dumped)

    opened by sourcesync 2
  • Training loss might not be summed

    Training loss might not be summed

    I think the training loss is not accumulated over all the batches, not sure if I am missing something here.

    train_loss added below

    ``

    def train(epoch):
        model.train()
        train_loss=0
        for batch_idx, (data, target) in enumerate(train_loader):
            if args.cuda:
                data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            train_loss +=loss.data[0]
            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), train_loss/(batch_idx+1) ))
    
    

    opened by morawi 2
  • save mode

    save mode

    When saving the resnext101_64x4d model, the following error occurred. There is no such problem in saving other models. What is the reason?

    Traceback (most recent call last): File "resnext101_64x4d_CellData.py", line 251, in main() File "resnext101_64x4d_CellData.py", line 243, in main max_acc = test(model, test_loader,max_acc,epoch_test) File "resnext101_64x4d_CellData.py", line 130, in test torch.save(model,'./models/%s.pth'%args.model_name) File "/home/zlw/.local/lib/python3.5/site-packages/torch/serialization.py", line 260, in save return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickle_protocol)) File "/home/zlw/.local/lib/python3.5/site-packages/torch/serialization.py", line 185, in _with_file_like return body(f) File "/home/zlw/.local/lib/python3.5/site-packages/torch/serialization.py", line 260, in return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickle_protocol)) File "/home/zlw/.local/lib/python3.5/site-packages/torch/serialization.py", line 332, in _save pickler.dump(obj) _pickle.PicklingError: Can't pickle <function at 0x7ff02de7b0d0>: attribute lookup on pretrainedmodels.models.resnext_features.resnext101_64x4d_features failed

    opened by liweizhong666 1
  • Add __main__ and move things into functions

    Add __main__ and move things into functions

    Using name to guard main function. This allows imports without running code, among other things. See: https://stackoverflow.com/questions/19578308/what-is-the-benefit-of-using-main-method-in-python

    opened by cgnorthcutt 1
  • Kernel size issue with

    Kernel size issue with "inceptionresnetv2"

    When I am trying to run examples/cifar10.py with Inception-Resnet-v2, i am getting the following error:

    RuntimeError: Calculated padded input size per channel: (1 x 1). Kernel size: (3 x 3). Kernel size can't be greater than actual input size

    Tried to run this:

    import argparse
    import torch
    import torchvision
    import torchvision.transforms as transforms
    from torch.autograd import Variable
    import torch.nn as nn
    import torch.optim as optim
    from cnn_finetune import make_model
    
    parser = argparse.ArgumentParser(description='Inception-Resnet-v2-TRAIN')
    parser.add_argument('--batch-size', type=int, default=32, metavar='N',
                        help='input batch size for training (default: 32)')
    parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
                        help='input batch size for testing (default: 64)')
    parser.add_argument('--epochs', type=int, default=100, metavar='N',
                        help='number of epochs to train (default: 100)')
    parser.add_argument('--save-model', type=int, default=10, metavar='N',
                        help='number of epochs after which the model will be saved (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                        help='SGD momentum (default: 0.9)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=100, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--model-name', type=str, default='resnet50', metavar='M',
                        help='model name (default: resnet50)')
    parser.add_argument('--dropout-p', type=float, default=0.2, metavar='D',
                        help='Dropout probability (default: 0.2)')
    
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    device = torch.device('cuda' if use_cuda else 'cpu')
    
    
    def train(model, epoch, optimizer, train_loader, criterion=nn.CrossEntropyLoss()):
        total_loss = 0
        total_size = 0
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            total_loss += loss.item()
            total_size += data.size(0)
            loss.backward()
            optimizer.step()
            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tAverage loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), total_loss / total_size))
    
    
    def main():
        model_name = args.model_name
    
        classes = (
            'plane', 'car', 'bird', 'cat', 'deer',
            'dog', 'frog', 'horse', 'ship', 'truck'
        )
    
        model = make_model(
            model_name,
            pretrained=True,
            num_classes=len(classes),
            pool=nn.AdaptiveMaxPool2d(1),
            dropout_p=args.dropout_p
        )
        model = model.to(device)
    
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(
                mean=model.original_model_info.mean,
                std=model.original_model_info.std),
        ])
    
        train_set = torchvision.datasets.CIFAR10(
            root='./data', train=True, download=True, transform=transform
        )
        train_loader = torch.utils.data.DataLoader(
            train_set, batch_size=args.batch_size, shuffle=True, num_workers=2
        )
    
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    
        # Use exponential decay for fine-tuning optimizer
        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.975)
    
        # Train
        for epoch in range(1, args.epochs + 1):
            train(model, epoch, optimizer, train_loader)
            scheduler.step(epoch)
            if epoch % args.save_model == 0:
                torch.save(model.state_dict(), './checkpoint/' + 'ckpt_' + str(epoch) + '.pth')
    
    
    if __name__ == '__main__':
        main()
    
    opened by roy-shudipto 0
  • how can i load the trained-model

    how can i load the trained-model

    hello, i finetune the pre-trained inception_v4 model with 3 classes,by model=make_model('inception_v4',3,pretrained=True) , and saved the trained-model as 'model.pth' by torch.save(model.state_dict(),'model.pth') but when i restored the model by model = make_model('inception_v4',3,pretrained=False) model.load_state_dict(torch.load('model.pth')) it goes wrong,and the error is : Unexpected key(s) in state_dict: "model._features.0.conv.weight", "model._features.0.bn.weight", "model._features.0.bn.bias", "model._features.0.bn.running_mean", "model._features.0.bn.running_var", "model._features.0.bn.num_batches_tracked", "model._features.1.conv.weight", "model._features.1.bn.weight", "model._features.1.bn.bias", "model._features.1.bn.running_mean", "model._features.1.bn.running_var", "model._features.1.bn.num_batches_tracked", "model._features.2.conv.weight", "model._features.2.bn.weight", "model._features.2.bn.bias", "model._features.2.bn.running_mean", "model._features.2.bn.running_var", "model._features.2.bn.num_batches_tracked", "model._features.3.conv.conv.weight", "model._features.3.conv.bn.weight", "model._features.3.conv.bn.bias", "model._features.3.conv.bn.running_mean", "model._features.3.conv.bn.running_var", "model._features.3.conv.bn.num_batches_tracked", "model._features.4.branch0.0.conv.weight", "model._features.4.branch0.0.bn.weight", "model._features.4.branch0.0.bn.bias", "model._features.4.branch0.0.bn.running_mean", "model._features.4.branch0.0.bn.running_var", "model._features.4.branch0.0.bn.num_batches_tracked", "model._features.4.branch0.1.conv.weight", "model._features.4.branch0.1.bn.weight", "model._features.4.branch0.1.bn.bias", "model._features.4.branch0.1.bn.running_mean", "model._features.4.branch0.1.bn.running_var", "model._features.4.branch0.1.bn.num_batches_tracked", "model._features.4.branch1.0.conv.weight", "model._features.4.branch1.0.bn.weight", "model._features.4.branch1.0.bn.bias", "model._features.4.branch1.0.bn.running_mean", "model._features.4.branch1.0.bn.running_var", "model._features.4.branch1.0.bn.num_batches_tracked", "model._features.4.branch1.1.conv.weight", "model._features.4.branch1.1.bn.weight", "model._features.4.branch1.1.bn.bias", "model._features.4.branch1.1.bn.running_mean", "model._features.4.branch1.1.bn.running_var", "model._features.4.branch1.1.bn.num_batches_tracked", "model._features.4.branch1.2.conv.weight", "model._features.4.branch1.2.bn.weight", "model._features.4.branch1.2.bn.bias", "model._features.4.branch1.2.bn.running_mean", "model._features.4.branch1.2.bn.running_var", "model._features.4.branch1.2.bn.num_batches_tracked", "model._features.4.branch1.3.conv.weight", "model._features.4.branch1.3.bn.weight", "model._features.4.branch1.3.bn.bias", "model._features.4.branch1.3.bn.running_mean", "model._features.4.branch1.3.bn.running_var", "model._features.4.branch1.3.bn.num_batches_tracked", "model._features.5.conv.conv.weight", "model._features.5.conv.bn.weight", "model._features.5.conv.bn.bias", "model._features.5.conv.bn.running_mean", "model._features.5.conv.bn.running_var", "model._features.5.conv.bn.num_batches_tracked", "model._features.6.branch0.conv.weight", "model._features.6.branch0.bn.weight", "model._features.6.branch0.bn.bias", "model._features.6.branch0.bn.running_mean", "model._features.6.branch0.bn.running_var", "model._features.6.branch0.bn.num_batches_tracked", "model._features.6.branch1.0.conv.weight", "model._features.6.branch1.0.bn.weight", "model._features.6.branch1.0.bn.bias", "model._features.6.branch1.0.bn.running_mean", "model._features.6.branch1.0.bn.running_var", "model._features.6.branch1.0.bn.num_batches_tracked", "model._features.6.branch1.1.conv.weight", "model._features.6.branch1.1.bn.weight", "model._features.6.branch1.1.bn.bias", "model._features.6.branch1.1.bn.running_mean", "model._features.6.branch1.1.bn.running_var", "model._features.6.branch1.1.bn.num_batches_tracked", "model._features.6.branch2.0.conv.weight", "model._features.6.branch2.0.bn.weight", "model._features.6.branch2.0.bn.bias", "model._features.6.branch2.0.bn.running_mean", "model._features.6.branch2.0.bn.running_var", "model._features.6.branch2.0.bn.num_batches_tracked", "model._features.6.branch2.1.conv.weight", "model._features.6.branch2.1.bn.weight", "model._features.6.branch2.1.bn.bias", "model._features.6.branch2.1.bn.running_mean", "model._features.6.branch2.1.bn.running_var", "model._features.6.branch2.1.bn.num_batches_tracked", "model._features.6.branch2.2.conv.weight", "model._features.6.branch2.2.bn.weight", "model._features.6.branch2.2.bn.bias", "model._features.6.branch2.2.bn.running_mean", "model._features.6.branch2.2.bn.running_var", "model._features.6.branch2.2.bn.num_batches_tracked", "model._features.6.branch3.1.conv.weight", "model._features.6.branch3.1.bn.weight", "model._features.6.branch3.1.bn.bias", "model._features.6.branch3.1.bn.running_mean", "model._features.6.branch3.1.bn.running_var", "model._features.6.branch3.1.bn.num_batches_tracked", "model._features.7.branch0.conv.weight", "model._features.7.branch0.bn.weight", "model._features.7.branch0.bn.bias", "model._features.7.branch0.bn.running_mean", "model._features.7.branch0.bn.running_var", "model._features.7.branch0.bn.num_batches_tracked", "model._features.7.branch1.0.conv.weight", "model._features.7.branch1.0.bn.weight", "model._features.7.branch1.0.bn.bias", "model._features.7.branch1.0.bn.running_mean", "model._features.7.branch1.0.bn.running_var", "model._features.7.branch1.0.bn.num_batches_tracked", "model._features.7.branch1.1.conv.weight", "model._features.7.branch1.1.bn.weight", "model._features.7.branch1.1.bn.bias", "model._features.7.branch1.1.bn.running_mean", "model._features.7.branch1.1.bn.running_var", "model._features.7.branch1.1.bn.num_batches_tracked", "model._features.7.branch2.0.conv.weight", "model._features.7.branch2.0.bn.weight", "model._features.7.branch2.0.bn.bias", "model._features.7.branch2.0.bn.running_mean", "model._features.7.branch2.0.bn.running_var", "model._features.7.branch2.0.bn.num_batches_tracked", "model._features.7.branch2.1.conv.weight", "model._features.7.branch2.1.bn.weight", "model._features.7.branch2.1.bn.bias", "model._features.7.branch2.1.bn.running_mean", "model._features.7.branch2.1.bn.running_var", "model._features.7.branch2.1.bn.num_batches_tracked", "model._features.7.branch2.2.conv.weight", "model._features.7.branch2.2.bn.weight", "model._features.7.branch2.2.bn.bias", "model._features.7.branch2.2.bn.running_mean", "model._features.7.branch2.2.bn.running_var", "model._features.7.branch2.2.bn.num_batches_tracked", "model._features.7.branch3.1.conv.weight", "model._features.7.branch3.1.bn.weight", "model._features.7.branch3.1.bn.bias", "model._features.7.branch3.1.bn.running_mean", "model._features.7.branch3.1.bn.running_var", "model._features.7.branch3.1.bn.num_batches_tracked", "model._features.8.branch0.conv.weight", "model._features.8.branch0.bn.weight", "model._features.8.branch0.bn.bias", "model._features.8.branch0.bn.running_mean", "model._features.8.branch0.bn.running_var", "model._features.8.branch0.bn.num_batches_tracked", "model._features.8.branch1.0.conv.weight", "model._features.8.branch1.0.bn.weight", "model._features.8.branch1.0.bn.bias", "model._features.8.branch1.0.bn.running_mean", "model._features.8.branch1.0.bn.running_var", "model._features.8.branch1.0.bn.num_batches_tracked", "model._features.8.branch1.1.conv.weight", "model._features.8.branch1.1.bn.weight", "model._features.8.branch1.1.bn.bias", "model._features.8.branch1.1.bn.running_mean", "model._features.8.branch1.1.bn.running_var", "model._features.8.branch1.1.bn.num_batches_tracked", "model._features.8.branch2.0.conv.weight", "model._features.8.branch2.0.bn.weight", "model._features.8.branch2.0.bn.bias", "model._features.8.branch2.0.bn.running_mean", "model._features.8.branch2.0.bn.running_var", "model._features.8.branch2.0.bn.num_batches_tracked", "model._features.8.branch2.1.conv.weight", "model._features.8.branch2.1.bn.weight", "model._features.8.branch2.1.bn.bias", "model._features.8.branch2.1.bn.running_mean", "model._features.8.branch2.1.bn.running_var", "model._features.8.branch2.1.bn.num_batches_tracked", "model._features.8.branch2.2.conv.weight", "model._features.8.branch2.2.bn.weight", "model._features.8.branch2.2.bn.bias", "model._features.8.branch2.2.bn.running_mean", "model._features.8.branch2.2.bn.running_var", "model._features.8.branch2.2.bn.num_batches_tracked", "model._features.8.branch3.1.conv.weight", "model._features.8.branch3.1.bn.weight", "model._features.8.branch3.1.bn.bias", "model._features.8.branch3.1.bn.running_mean", "model._features.8.branch3.1.bn.running_var", "model._features.8.branch3.1.bn.num_batches_tracked", "model._features.9.branch0.conv.weight", "model._features.9.branch0.bn.weight", "model._features.9.branch0.bn.bias", "model._features.9.branch0.bn.running_mean", "model._features.9.branch0.bn.running_var", "model._features.9.branch0.bn.num_batches_tracked", "model._features.9.branch1.0.conv.weight", "model._features.9.branch1.0.bn.weight", "model._features.9.branch1.0.bn.bias", "model._features.9.branch1.0.bn.running_mean", "model._features.9.branch1.0.bn.running_var", "model._features.9.branch1.0.bn.num_batches_tracked", "model._features.9.branch1.1.conv.weight", "model._features.9.branch1.1.bn.weight", "model._features.9.branch1.1.bn.bias", "model._features.9.branch1.1.bn.running_mean", "model._features.9.branch1.1.bn.running_var", "model._features.9.branch1.1.bn.num_batches_tracked", "model._features.9.branch2.0.conv.weight", "model._features.9.branch2.0.bn.weight", "model._features.9.branch2.0.bn.bias", "model._features.9.branch2.0.bn.running_mean", "model._features.9.branch2.0.bn.running_var", "model._features.9.branch2.0.bn.num_batches_tracked", "model._features.9.branch2.1.conv.weight", "model._features.9.branch2.1.bn.weight", "model._features.9.branch2.1.bn.bias", "model._features.9.branch2.1.bn.running_mean", "model._features.9.branch2.1.bn.running_var", "model._features.9.branch2.1.bn.num_batches_tracked", "model._features.9.branch2.2.conv.weight", "model._features.9.branch2.2.bn.weight", "model._features.9.branch2.2.bn.bias", "model._features.9.branch2.2.bn.running_mean", "model._features.9.branch2.2.bn.running_var", "model._features.9.branch2.2.bn.num_batches_tracked", "model._features.9.branch3.1.conv.weight", "model._features.9.branch3.1.bn.weight", "model._features.9.branch3.1.bn.bias", "model._features.9.branch3.1.bn.running_mean", "model._features.9.branch3.1.bn.running_var", "model._features.9.branch3.1.bn.num_batches_tracked", "model._features.10.branch0.conv.weight", "model._features.10.branch0.bn.weight", "model._features.10.branch0.bn.bias", "model._features.10.branch0.bn.running_mean", "model._features.10.branch0.bn.running_var", "model._features.10.branch0.bn.num_batches_tracked", "model._features.10.branch1.0.conv.weight", "model._features.10.branch1.0.bn.weight", "model._features.10.branch1.0.bn.bias", "model._features.10.branch1.0.bn.running_mean", "model._features.10.branch1.0.bn.running_var", "model._features.10.branch1.0.bn.num_batches_tracked", "model._features.10.branch1.1.conv.weight", "model._features.10.branch1.1.bn.weight", "model._features.10.branch1.1.bn.bias", "model._features.10.branch1.1.bn.running_mean", "model._features.10.branch1.1.bn.running_var", "model._features.10.branch1.1.bn.num_batches_tracked", "model._features.10.branch1.2.conv.weight", "model._features.10.branch1.2.bn.weight", "model._features.10.branch1.2.bn.bias", "model._features.10.branch1.2.bn.running_mean", "model._features.10.branch1.2.bn.running_var", "model._features.10.branch1.2.bn.num_batches_tracked", "model._features.11.branch0.conv.weight", "model._features.11.branch0.bn.weight", "model._features.11.branch0.bn.bias", "model._features.11.branch0.bn.running_mean", "model._features.11.branch0.bn.running_var", "model._features.11.branch0.bn.num_batches_tracked", "model._features.11.branch1.0.conv.weight", "model._features.11.branch1.0.bn.weight", "model._features.11.branch1.0.bn.bias", "model._features.11.branch1.0.bn.running_mean", "model._features.11.branch1.0.bn.running_var", "model._features.11.branch1.0.bn.num_batches_tracked", "model._features.11.branch1.1.conv.weight", "model._features.11.branch1.1.bn.weight", "model._features.11.branch1.1.bn.bias", "model._features.11.branch1.1.bn.running_mean", "model._features.11.branch1.1.bn.running_var", "model._features.11.branch1.1.bn.num_batches_tracked", "model._features.11.branch1.2.conv.weight", "model._features.11.branch1.2.bn.weight", "model._features.11.branch1.2.bn.bias", "model._features.11.branch1.2.bn.running_mean", "model._features.11.branch1.2.bn.running_var", "model._features.11.branch1.2.bn.num_batches_tracked", "model._features.11.branch2.0.conv.weight", "model._features.11.branch2.0.bn.weight", "model._features.11.branch2.0.bn.bias", "model._features.11.branch2.0.bn.running_mean", "model._features.11.branch2.0.bn.running_var", "model._features.11.branch2.0.bn.num_batches_tracked", "model._features.11.branch2.1.conv.weight", "model._features.11.branch2.1.bn.weight", "model._features.11.branch2.1.bn.bias", "model._features.11.branch2.1.bn.running_mean", "model._features.11.branch2.1.bn.running_var", "model._features.11.branch2.1.bn.num_batches_tracked", "model._features.11.branch2.2.conv.weight", "model._features.11.branch2.2.bn.weight", "model._features.11.branch2.2.bn.bias", "model._features.11.branch2.2.bn.running_mean", "model._features.11.branch2.2.bn.running_var", "model._features.11.branch2.2.bn.num_batches_tracked", "model._features.11.branch2.3.conv.weight", "model._features.11.branch2.3.bn.weight", "model._features.11.branch2.3.bn.bias", "model._features.11.branch2.3.bn.running_mean", "model._features.11.branch2.3.bn.running_var", "model._features.11.branch2.3.bn.num_batches_tracked", "model._features.11.branch2.4.conv.weight", "model._features.11.branch2.4.bn.weight", "model._features.11.branch2.4.bn.bias", "model._features.11.branch2.4.bn.running_mean", "model._features.11.branch2.4.bn.running_var", "model._features.11.branch2.4.bn.num_batches_tracked", "model._features.11.branch3.1.conv.weight", "model._features.11.branch3.1.bn.weight", "model._features.11.branch3.1.bn.bias", "model._features.11.branch3.1.bn.running_mean", "model._features.11.branch3.1.bn.running_var", "model._features.11.branch3.1.bn.num_batches_tracked", "model._features.12.branch0.conv.weight", "model._features.12.branch0.bn.weight", "model._features.12.branch0.bn.bias", "model._features.12.branch0.bn.running_mean", "model._features.12.branch0.bn.running_var", "model._features.12.branch0.bn.num_batches_tracked", "model._features.12.branch1.0.conv.weight", "model._features.12.branch1.0.bn.weight", "model._features.12.branch1.0.bn.bias", "model._features.12.branch1.0.bn.running_mean", "model._features.12.branch1.0.bn.running_var", "model._features.12.branch1.0.bn.num_batches_tracked", "model._features.12.branch1.1.conv.weight", "model._features.12.branch1.1.bn.weight", "model._features.12.branch1.1.bn.bias", "model._features.12.branch1.1.bn.running_mean", "model._features.12.branch1.1.bn.running_var", "model._features.12.branch1.1.bn.num_batches_tracked", "model._features.12.branch1.2.conv.weight", "model._features.12.branch1.2.bn.weight", "model._features.12.branch1.2.bn.bias", "model._features.12.branch1.2.bn.running_mean", "model._features.12.branch1.2.bn.running_var", "model._features.12.branch1.2.bn.num_batches_tracked", "model._features.12.branch2.0.conv.weight", "model._features.12.branch2.0.bn.weight", "model._features.12.branch2.0.bn.bias", "model._features.12.branch2.0.bn.running_mean", "model._features.12.branch2.0.bn.running_var", "model._features.12.branch2.0.bn.num_batches_tracked", "model._features.12.branch2.1.conv.weight", "model._features.12.branch2.1.bn.weight", "model._features.12.branch2.1.bn.bias", "model._features.12.branch2.1.bn.running_mean", "model._features.12.branch2.1.bn.running_var", "model._features.12.branch2.1.bn.num_batches_tracked", "model._features.12.branch2.2.conv.weight", "model._features.12.branch2.2.bn.weight", "model._features.12.branch2.2.bn.bias", "model._features.12.branch2.2.bn.running_mean", "model._features.12.branch2.2.bn.running_var", "model._features.12.branch2.2.bn.num_batches_tracked", "model._features.12.branch2.3.conv.weight", "model._features.12.branch2.3.bn.weight", "model._features.12.branch2.3.bn.bias", "model._features.12.branch2.3.bn.running_mean", "model._features.12.branch2.3.bn.running_var", "model._features.12.branch2.3.bn.num_batches_tracked", "model._features.12.branch2.4.conv.weight", "model._features.12.branch2.4.bn.weight", "model._features.12.branch2.4.bn.bias", "model._features.12.branch2.4.bn.running_mean", "model._features.12.branch2.4.bn.running_var", "model._features.12.branch2.4.bn.num_batches_tracked", "model._features.12.branch3.1.conv.weight", "model._features.12.branch3.1.bn.weight", "model._features.12.branch3.1.bn.bias", "model._features.12.branch3.1.bn.running_mean", "model._features.12.branch3.1.bn.running_var", "model._features.12.branch3.1.bn.num_batches_tracked", "model._features.13.branch0.conv.weight", "model._features.13.branch0.bn.weight", "model._features.13.branch0.bn.bias", "model._features.13.branch0.bn.running_mean", "model._features.13.branch0.bn.running_var", "model._features.13.branch0.bn.num_batches_tracked", "model._features.13.branch1.0.conv.weight", "model._features.13.branch1.0.bn.weight", "model._features.13.branch1.0.bn.bias", "model._features.13.branch1.0.bn.running_mean", "model._features.13.branch1.0.bn.running_var", "model._features.13.branch1.0.bn.num_batches_tracked", "model._features.13.branch1.1.conv.weight", "model._features.13.branch1.1.bn.weight", "model._features.13.branch1.1.bn.bias", "model._features.13.branch1.1.bn.running_mean", "model._features.13.branch1.1.bn.running_var", "model._features.13.branch1.1.bn.num_batches_tracked", "model._features.13.branch1.2.conv.weight", "model._features.13.branch1.2.bn.weight", "model._features.13.branch1.2.bn.bias", "model._features.13.branch1.2.bn.running_mean", "model._features.13.branch1.2.bn.running_var", "model._features.13.branch1.2.bn.num_batches_tracked", "model._features.13.branch2.0.conv.weight", "model._features.13.branch2.0.bn.weight", "model._features.13.branch2.0.bn.bias", "model._features.13.branch2.0.bn.running_mean", "model._features.13.branch2.0.bn.running_var", "model._features.13.branch2.0.bn.num_batches_tracked", "model._features.13.branch2.1.conv.weight", "model._features.13.branch2.1.bn.weight", "model._features.13.branch2.1.bn.bias", "model._features.13.branch2.1.bn.running_mean", "model._features.13.branch2.1.bn.running_var", "model._features.13.branch2.1.bn.num_batches_tracked", "model._features.13.branch2.2.conv.weight", "model._features.13.branch2.2.bn.weight", "model._features.13.branch2.2.bn.bias", "model._features.13.branch2.2.bn.running_mean", "model._features.13.branch2.2.bn.running_var", "model._features.13.branch2.2.bn.num_batches_tracked", "model._features.13.branch2.3.conv.weight", "model._features.13.branch2.3.bn.weight", "model._features.13.branch2.3.bn.bias", "model._features.13.branch2.3.bn.running_mean", "model._features.13.branch2.3.bn.running_var", "model._features.13.branch2.3.bn.num_batches_tracked", "model._features.13.branch2.4.conv.weight", "model._features.13.branch2.4.bn.weight", "model._features.13.branch2.4.bn.bias", "model._features.13.branch2.4.bn.running_mean", "model._features.13.branch2.4.bn.running_var", "model._features.13.branch2.4.bn.num_batches_tracked", "model._features.13.branch3.1.conv.weight", "model._features.13.branch3.1.bn.weight", "model._features.13.branch3.1.bn.bias", "model._features.13.branch3.1.bn.running_mean", "model._features.13.branch3.1.bn.running_var", "model._features.13.branch3.1.bn.num_batches_tracked", "model._features.14.branch0.conv.weight", "model._features.14.branch0.bn.weight", "model._features.14.branch0.bn.bias", "model._features.14.branch0.bn.running_mean", "model._features.14.branch0.bn.running_var", "model._features.14.branch0.bn.num_batches_tracked", "model._features.14.branch1.0.conv.weight", "model._features.14.branch1.0.bn.weight", "model._features.14.branch1.0.bn.bias", "model._features.14.branch1.0.bn.running_mean", "model._features.14.branch1.0.bn.running_var", "model._features.14.branch1.0.bn.num_batches_tracked", "model._features.14.branch1.1.conv.weight", "model._features.14.branch1.1.bn.weight", "model._features.14.branch1.1.bn.bias", "model._features.14.branch1.1.bn.running_mean", "model._features.14.branch1.1.bn.running_var", "model._features.14.branch1.1.bn.num_batches_tracked", "model._features.14.branch1.2.conv.weight", "model._features.14.branch1.2.bn.weight", "model._features.14.branch1.2.bn.bias", "model._features.14.branch1.2.bn.running_mean", "model._features.14.branch1.2.bn.running_var", "model._features.14.branch1.2.bn.num_batches_tracked", "model._features.14.branch2.0.conv.weight", "model._features.14.branch2.0.bn.weight", "model._features.14.branch2.0.bn.bias", "model._features.14.branch2.0.bn.running_mean", "model._features.14.branch2.0.bn.running_var", "model._features.14.branch2.0.bn.num_batches_tracked", "model._features.14.branch2.1.conv.weight", "model._features.14.branch2.1.bn.weight", "model._features.14.branch2.1.bn.bias", "model._features.14.branch2.1.bn.running_mean", "model._features.14.branch2.1.bn.running_var", "model._features.14.branch2.1.bn.num_batches_tracked", "model._features.14.branch2.2.conv.weight", "model._features.14.branch2.2.bn.weight", "model._features.14.branch2.2.bn.bias", "model._features.14.branch2.2.bn.running_mean", "model._features.14.branch2.2.bn.running_var", "model._features.14.branch2.2.bn.num_batches_tracked", "model._features.14.branch2.3.conv.weight", "model._features.14.branch2.3.bn.weight", "model._features.14.branch2.3.bn.bias", "model._features.14.branch2.3.bn.running_mean", "model._features.14.branch2.3.bn.running_var", "model._features.14.branch2.3.bn.num_batches_tracked", "model._features.14.branch2.4.conv.weight", "model._features.14.branch2.4.bn.weight", "model._features.14.branch2.4.bn.bias", "model._features.14.branch2.4.bn.running_mean", "model._features.14.branch2.4.bn.running_var", "model._features.14.branch2.4.bn.num_batches_tracked", "model._features.14.branch3.1.conv.weight", "model._features.14.branch3.1.bn.weight", "model._features.14.branch3.1.bn.bias", "model._features.14.branch3.1.bn.running_mean", "model._features.14.branch3.1.bn.running_var", "model._features.14.branch3.1.bn.num_batches_tracked", "model._features.15.branch0.conv.weight", "model._features.15.branch0.bn.weight", "model._features.15.branch0.bn.bias", "model._features.15.branch0.bn.running_mean", "model._features.15.branch0.bn.running_var", "model._features.15.branch0.bn.num_batches_tracked", "model._features.15.branch1.0.conv.weight", "model._features.15.branch1.0.bn.weight", "model._features.15.branch1.0.bn.bias", "model._features.15.branch1.0.bn.running_mean", "model._features.15.branch1.0.bn.running_var", "model._features.15.branch1.0.bn.num_batches_tracked", "model._features.15.branch1.1.conv.weight", "model._features.15.branch1.1.bn.weight", "model._features.15.branch1.1.bn.bias", "model._features.15.branch1.1.bn.running_mean", "model._features.15.branch1.1.bn.running_var", "model._features.15.branch1.1.bn.num_batches_tracked", "model._features.15.branch1.2.conv.weight", "model._features.15.branch1.2.bn.weight", "model._features.15.branch1.2.bn.bias", "model._features.15.branch1.2.bn.running_mean", "model._features.15.branch1.2.bn.running_var", "model._features.15.branch1.2.bn.num_batches_tracked", "model._features.15.branch2.0.conv.weight", "model._features.15.branch2.0.bn.weight", "model._features.15.branch2.0.bn.bias", "model._features.15.branch2.0.bn.running_mean", "model._features.15.branch2.0.bn.running_var", "model._features.15.branch2.0.bn.num_batches_tracked", "model._features.15.branch2.1.conv.weight", "model._features.15.branch2.1.bn.weight", "model._features.15.branch2.1.bn.bias", "model._features.15.branch2.1.bn.running_mean", "model._features.15.branch2.1.bn.running_var", "model._features.15.branch2.1.bn.num_batches_tracked", "model._features.15.branch2.2.conv.weight", "model._features.15.branch2.2.bn.weight", "model._features.15.branch2.2.bn.bias", "model._features.15.branch2.2.bn.running_mean", "model._features.15.branch2.2.bn.running_var", "model._features.15.branch2.2.bn.num_batches_tracked", "model._features.15.branch2.3.conv.weight", "model._features.15.branch2.3.bn.weight", "model._features.15.branch2.3.bn.bias", "model._features.15.branch2.3.bn.running_mean", "model._features.15.branch2.3.bn.running_var", "model._features.15.branch2.3.bn.num_batches_tracked", "model._features.15.branch2.4.conv.weight", "model._features.15.branch2.4.bn.weight", "model._features.15.branch2.4.bn.bias", "model._features.15.branch2.4.bn.running_mean", "model._features.15.branch2.4.bn.running_var", "model._features.15.branch2.4.bn.num_batches_tracked", "model._features.15.branch3.1.conv.weight", "model._features.15.branch3.1.bn.weight", "model._features.15.branch3.1.bn.bias", "model._features.15.branch3.1.bn.running_mean", "model._features.15.branch3.1.bn.running_var", "model._features.15.branch3.1.bn.num_batches_tracked", "model._features.16.branch0.conv.weight", "model._features.16.branch0.bn.weight", "model._features.16.branch0.bn.bias", "model._features.16.branch0.bn.running_mean", "model._features.16.branch0.bn.running_var", "model._features.16.branch0.bn.num_batches_tracked", "model._features.16.branch1.0.conv.weight", "model._features.16.branch1.0.bn.weight", "model._features.16.branch1.0.bn.bias", "model._features.16.branch1.0.bn.running_mean", "model._features.16.branch1.0.bn.running_var", "model._features.16.branch1.0.bn.num_batches_tracked", "model._features.16.branch1.1.conv.weight", "model._features.16.branch1.1.bn.weight", "model._features.16.branch1.1.bn.bias", "model._features.16.branch1.1.bn.running_mean", "model._features.16.branch1.1.bn.running_var", "model._features.16.branch1.1.bn.num_batches_tracked", "model._features.16.branch1.2.conv.weight", "model._features.16.branch1.2.bn.weight", "model._features.16.branch1.2.bn.bias", "model._features.16.branch1.2.bn.running_mean", "model._features.16.branch1.2.bn.running_var", "model._features.16.branch1.2.bn.num_batches_tracked", "model._features.16.branch2.0.conv.weight", "model._features.16.branch2.0.bn.weight", "model._features.16.branch2.0.bn.bias", "model._features.16.branch2.0.bn.running_mean", "model._features.16.branch2.0.bn.running_var", "model._features.16.branch2.0.bn.num_batches_tracked", "model._features.16.branch2.1.conv.weight", "model._features.16.branch2.1.bn.weight", "model._features.16.branch2.1.bn.bias", "model._features.16.branch2.1.bn.running_mean", "model._features.16.branch2.1.bn.running_var", "model._features.16.branch2.1.bn.num_batches_tracked", "model._features.16.branch2.2.conv.weight", "model._features.16.branch2.2.bn.weight", "model._features.16.branch2.2.bn.bias", "model._features.16.branch2.2.bn.running_mean", "model._features.16.branch2.2.bn.running_var", "model._features.16.branch2.2.bn.num_batches_tracked", "model._features.16.branch2.3.conv.weight", "model._features.16.branch2.3.bn.weight", "model._features.16.branch2.3.bn.bias", "model._features.16.branch2.3.bn.running_mean", "model._features.16.branch2.3.bn.running_var", "model._features.16.branch2.3.bn.num_batches_tracked", "model._features.16.branch2.4.conv.weight", "model._features.16.branch2.4.bn.weight", "model._features.16.branch2.4.bn.bias", "model._features.16.branch2.4.bn.running_mean", "model._features.16.branch2.4.bn.running_var", "model._features.16.branch2.4.bn.num_batches_tracked", "model._features.16.branch3.1.conv.weight", "model._features.16.branch3.1.bn.weight", "model._features.16.branch3.1.bn.bias", "model._features.16.branch3.1.bn.running_mean", "model._features.16.branch3.1.bn.running_var", "model._features.16.branch3.1.bn.num_batches_tracked", "model._features.17.branch0.conv.weight", "model._features.17.branch0.bn.weight", "model._features.17.branch0.bn.bias", "model._features.17.branch0.bn.running_mean", "model._features.17.branch0.bn.running_var", "model._features.17.branch0.bn.num_batches_tracked", "model._features.17.branch1.0.conv.weight", "model._features.17.branch1.0.bn.weight", "model._features.17.branch1.0.bn.bias", "model._features.17.branch1.0.bn.running_mean", "model._features.17.branch1.0.bn.running_var", "model._features.17.branch1.0.bn.num_batches_tracked", "model._features.17.branch1.1.conv.weight", "model._features.17.branch1.1.bn.weight", "model._features.17.branch1.1.bn.bias", "model._features.17.branch1.1.bn.running_mean", "model._features.17.branch1.1.bn.running_var", "model._features.17.branch1.1.bn.num_batches_tracked", "model._features.17.branch1.2.conv.weight", "model._features.17.branch1.2.bn.weight", "model._features.17.branch1.2.bn.bias", "model._features.17.branch1.2.bn.running_mean", "model._features.17.branch1.2.bn.running_var", "model._features.17.branch1.2.bn.num_batches_tracked", "model._features.17.branch2.0.conv.weight", "model._features.17.branch2.0.bn.weight", "model._features.17.branch2.0.bn.bias", "model._features.17.branch2.0.bn.running_mean", "model._features.17.branch2.0.bn.running_var", "model._features.17.branch2.0.bn.num_batches_tracked", "model._features.17.branch2.1.conv.weight", "model._features.17.branch2.1.bn.weight", "model._features.17.branch2.1.bn.bias", "model._features.17.branch2.1.bn.running_mean", "model._features.17.branch2.1.bn.running_var", "model._features.17.branch2.1.bn.num_batches_tracked", "model._features.17.branch2.2.conv.weight", "model._features.17.branch2.2.bn.weight", "model._features.17.branch2.2.bn.bias", "model._features.17.branch2.2.bn.running_mean", "model._features.17.branch2.2.bn.running_var", "model._features.17.branch2.2.bn.num_batches_tracked", "model._features.17.branch2.3.conv.weight", "model._features.17.branch2.3.bn.weight", "model._features.17.branch2.3.bn.bias", "model._features.17.branch2.3.bn.running_mean", "model._features.17.branch2.3.bn.running_var", "model._features.17.branch2.3.bn.num_batches_tracked", "model._features.17.branch2.4.conv.weight", "model._features.17.branch2.4.bn.weight", "model._features.17.branch2.4.bn.bias", "model._features.17.branch2.4.bn.running_mean", "model._features.17.branch2.4.bn.running_var", "model._features.17.branch2.4.bn.num_batches_tracked", "model._features.17.branch3.1.conv.weight", "model._features.17.branch3.1.bn.weight", "model._features.17.branch3.1.bn.bias", "model._features.17.branch3.1.bn.running_mean", "model._features.17.branch3.1.bn.running_var", "model._features.17.branch3.1.bn.num_batches_tracked", "model._features.18.branch0.0.conv.weight", "model._features.18.branch0.0.bn.weight", "model._features.18.branch0.0.bn.bias", "model._features.18.branch0.0.bn.running_mean", "model._features.18.branch0.0.bn.running_var", "model._features.18.branch0.0.bn.num_batches_tracked", "model._features.18.branch0.1.conv.weight", "model._features.18.branch0.1.bn.weight", "model._features.18.branch0.1.bn.bias", "model._features.18.branch0.1.bn.running_mean", "model._features.18.branch0.1.bn.running_var", "model._features.18.branch0.1.bn.num_batches_tracked", "model._features.18.branch1.0.conv.weight", "model._features.18.branch1.0.bn.weight", "model._features.18.branch1.0.bn.bias", "model._features.18.branch1.0.bn.running_mean", "model._features.18.branch1.0.bn.running_var", "model._features.18.branch1.0.bn.num_batches_tracked", "model._features.18.branch1.1.conv.weight", "model._features.18.branch1.1.bn.weight", "model._features.18.branch1.1.bn.bias", "model._features.18.branch1.1.bn.running_mean", "model._features.18.branch1.1.bn.running_var", "model._features.18.branch1.1.bn.num_batches_tracked", "model._features.18.branch1.2.conv.weight", "model._features.18.branch1.2.bn.weight", "model._features.18.branch1.2.bn.bias", "model._features.18.branch1.2.bn.running_mean", "model._features.18.branch1.2.bn.running_var", "model._features.18.branch1.2.bn.num_batches_tracked", "model._features.18.branch1.3.conv.weight", "model._features.18.branch1.3.bn.weight", "model._features.18.branch1.3.bn.bias", "model._features.18.branch1.3.bn.running_mean", "model._features.18.branch1.3.bn.running_var", "model._features.18.branch1.3.bn.num_batches_tracked", "model._features.19.branch0.conv.weight", "model._features.19.branch0.bn.weight", "model._features.19.branch0.bn.bias", "model._features.19.branch0.bn.running_mean", "model._features.19.branch0.bn.running_var", "model._features.19.branch0.bn.num_batches_tracked", "model._features.19.branch1_0.conv.weight", "model._features.19.branch1_0.bn.weight", "model._features.19.branch1_0.bn.bias", "model._features.19.branch1_0.bn.running_mean", "model._features.19.branch1_0.bn.running_var", "model._features.19.branch1_0.bn.num_batches_tracked", "model._features.19.branch1_1a.conv.weight", "model._features.19.branch1_1a.bn.weight", "model._features.19.branch1_1a.bn.bias", "model._features.19.branch1_1a.bn.running_mean", "model._features.19.branch1_1a.bn.running_var", "model._features.19.branch1_1a.bn.num_batches_tracked", "model._features.19.branch1_1b.conv.weight", "model._features.19.branch1_1b.bn.weight", "model._features.19.branch1_1b.bn.bias", "model._features.19.branch1_1b.bn.running_mean", "model._features.19.branch1_1b.bn.running_var", "model._features.19.branch1_1b.bn.num_batches_tracked", "model._features.19.branch2_0.conv.weight", "model._features.19.branch2_0.bn.weight", "model._features.19.branch2_0.bn.bias", "model._features.19.branch2_0.bn.running_mean", "model._features.19.branch2_0.bn.running_var", "model._features.19.branch2_0.bn.num_batches_tracked", "model._features.19.branch2_1.conv.weight", "model._features.19.branch2_1.bn.weight", "model._features.19.branch2_1.bn.bias", "model._features.19.branch2_1.bn.running_mean", "model._features.19.branch2_1.bn.running_var", "model._features.19.branch2_1.bn.num_batches_tracked", "model._features.19.branch2_2.conv.weight", "model._features.19.branch2_2.bn.weight", "model._features.19.branch2_2.bn.bias", "model._features.19.branch2_2.bn.running_mean", "model._features.19.branch2_2.bn.running_var", "model._features.19.branch2_2.bn.num_batches_tracked", "model._features.19.branch2_3a.conv.weight", "model._features.19.branch2_3a.bn.weight", "model._features.19.branch2_3a.bn.bias", "model._features.19.branch2_3a.bn.running_mean", "model._features.19.branch2_3a.bn.running_var", "model._features.19.branch2_3a.bn.num_batches_tracked", "model._features.19.branch2_3b.conv.weight", "model._features.19.branch2_3b.bn.weight", "model._features.19.branch2_3b.bn.bias", "model._features.19.branch2_3b.bn.running_mean", "model._features.19.branch2_3b.bn.running_var", "model._features.19.branch2_3b.bn.num_batches_tracked", "model._features.19.branch3.1.conv.weight", "model._features.19.branch3.1.bn.weight", "model._features.19.branch3.1.bn.bias", "model._features.19.branch3.1.bn.running_mean", "model._features.19.branch3.1.bn.running_var", "model._features.19.branch3.1.bn.num_batches_tracked", "model._features.20.branch0.conv.weight", "model._features.20.branch0.bn.weight", "model._features.20.branch0.bn.bias", "model._features.20.branch0.bn.running_mean", "model._features.20.branch0.bn.running_var", "model._features.20.branch0.bn.num_batches_tracked", "model._features.20.branch1_0.conv.weight", "model._features.20.branch1_0.bn.weight", "model._features.20.branch1_0.bn.bias", "model._features.20.branch1_0.bn.running_mean", "model._features.20.branch1_0.bn.running_var", "model._features.20.branch1_0.bn.num_batches_tracked", "model._features.20.branch1_1a.conv.weight", "model._features.20.branch1_1a.bn.weight", "model._features.20.branch1_1a.bn.bias", "model._features.20.branch1_1a.bn.running_mean", "model._features.20.branch1_1a.bn.running_var", "model._features.20.branch1_1a.bn.num_batches_tracked", "model._features.20.branch1_1b.conv.weight", "model._features.20.branch1_1b.bn.weight", "model._features.20.branch1_1b.bn.bias", "model._features.20.branch1_1b.bn.running_mean", "model._features.20.branch1_1b.bn.running_var", "model._features.20.branch1_1b.bn.num_batches_tracked", "model._features.20.branch2_0.conv.weight", "model._features.20.branch2_0.bn.weight", "model._features.20.branch2_0.bn.bias", "model._features.20.branch2_0.bn.running_mean", "model._features.20.branch2_0.bn.running_var", "model._features.20.branch2_0.bn.num_batches_tracked", "model._features.20.branch2_1.conv.weight", "model._features.20.branch2_1.bn.weight", "model._features.20.branch2_1.bn.bias", "model._features.20.branch2_1.bn.running_mean", "model._features.20.branch2_1.bn.running_var", "model._features.20.branch2_1.bn.num_batches_tracked", "model._features.20.branch2_2.conv.weight", "model._features.20.branch2_2.bn.weight", "model._features.20.branch2_2.bn.bias", "model._features.20.branch2_2.bn.running_mean", "model._features.20.branch2_2.bn.running_var", "model._features.20.branch2_2.bn.num_batches_tracked", "model._features.20.branch2_3a.conv.weight", "model._features.20.branch2_3a.bn.weight", "model._features.20.branch2_3a.bn.bias", "model._features.20.branch2_3a.bn.running_mean", "model._features.20.branch2_3a.bn.running_var", "model._features.20.branch2_3a.bn.num_batches_tracked", "model._features.20.branch2_3b.conv.weight", "model._features.20.branch2_3b.bn.weight", "model._features.20.branch2_3b.bn.bias", "model._features.20.branch2_3b.bn.running_mean", "model._features.20.branch2_3b.bn.running_var", "model._features.20.branch2_3b.bn.num_batches_tracked", "model._features.20.branch3.1.conv.weight", "model._features.20.branch3.1.bn.weight", "model._features.20.branch3.1.bn.bias", "model._features.20.branch3.1.bn.running_mean", "model._features.20.branch3.1.bn.running_var", "model._features.20.branch3.1.bn.num_batches_tracked", "model._features.21.branch0.conv.weight", "model._features.21.branch0.bn.weight", "model._features.21.branch0.bn.bias", "model._features.21.branch0.bn.running_mean", "model._features.21.branch0.bn.running_var", "model._features.21.branch0.bn.num_batches_tracked", "model._features.21.branch1_0.conv.weight", "model._features.21.branch1_0.bn.weight", "model._features.21.branch1_0.bn.bias", "model._features.21.branch1_0.bn.running_mean", "model._features.21.branch1_0.bn.running_var", "model._features.21.branch1_0.bn.num_batches_tracked", "model._features.21.branch1_1a.conv.weight", "model._features.21.branch1_1a.bn.weight", "model._features.21.branch1_1a.bn.bias", "model._features.21.branch1_1a.bn.running_mean", "model._features.21.branch1_1a.bn.running_var", "model._features.21.branch1_1a.bn.num_batches_tracked", "model._features.21.branch1_1b.conv.weight", "model._features.21.branch1_1b.bn.weight", "model._features.21.branch1_1b.bn.bias", "model._features.21.branch1_1b.bn.running_mean", "model._features.21.branch1_1b.bn.running_var", "model._features.21.branch1_1b.bn.num_batches_tracked", "model._features.21.branch2_0.conv.weight", "model._features.21.branch2_0.bn.weight", "model._features.21.branch2_0.bn.bias", "model._features.21.branch2_0.bn.running_mean", "model._features.21.branch2_0.bn.running_var", "model._features.21.branch2_0.bn.num_batches_tracked", "model._features.21.branch2_1.conv.weight", "model._features.21.branch2_1.bn.weight", "model._features.21.branch2_1.bn.bias", "model._features.21.branch2_1.bn.running_mean", "model._features.21.branch2_1.bn.running_var", "model._features.21.branch2_1.bn.num_batches_tracked", "model._features.21.branch2_2.conv.weight", "model._features.21.branch2_2.bn.weight", "model._features.21.branch2_2.bn.bias", "model._features.21.branch2_2.bn.running_mean", "model._features.21.branch2_2.bn.running_var", "model._features.21.branch2_2.bn.num_batches_tracked", "model._features.21.branch2_3a.conv.weight", "model._features.21.branch2_3a.bn.weight", "model._features.21.branch2_3a.bn.bias", "model._features.21.branch2_3a.bn.running_mean", "model._features.21.branch2_3a.bn.running_var", "model._features.21.branch2_3a.bn.num_batches_tracked", "model._features.21.branch2_3b.conv.weight", "model._features.21.branch2_3b.bn.weight", "model._features.21.branch2_3b.bn.bias", "model._features.21.branch2_3b.bn.running_mean", "model._features.21.branch2_3b.bn.running_var", "model._features.21.branch2_3b.bn.num_batches_tracked", "model._features.21.branch3.1.conv.weight", "model._features.21.branch3.1.bn.weight", "model._features.21.branch3.1.bn.bias", "model._features.21.branch3.1.bn.running_mean", "model._features.21.branch3.1.bn.running_var", "model._features.21.branch3.1.bn.num_batches_tracked", "model._classifier.weight", "model._classifier.bias". how can i solve it? i am waiting for your reply

    opened by LianShuaiLong 2
  • ask  a question

    ask a question

    What does your network “output ” include? “output = model(data) ” Is “output.data () ” a logical value?

    I want to get the classification probability, how do I get it? Thanks!

    opened by liweizhong666 0
  • Auto Flattening of features

    Auto Flattening of features

    Hi,

    I found this annoying feature/bug as one may like to:

    def forward(self, x):
        x = self.features(x)
        if self.pool is not None:
            x = self.pool(x)
        if self.dropout is not None:
            x = self.dropout(x)
        if self.flatten_features_output:
            x = x.view(x.size(0), -1)
         x = self.classifier(x)
         return x
    

    Why do you have self.flatten_features_output if it is always going to be true? There is no access to that variable. And once the pooling is set to None, the tensor is automatically flattened instead of giving access to the layer. Any plans of changing it? Or giving access?

    opened by Geeks-Sid 1
Owner
Alex Parinov
Computer Vision Architect
Alex Parinov
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 9, 2022
Saeed Lotfi 28 Dec 12, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 3, 2023
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 8, 2023
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

null 0 Mar 1, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 1, 2023
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 8, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022