Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

Overview

custom-cnn-fashion-mnist

Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

The following hyperparameters were selected for hypertuning with the Grid Search with 5-fold cross-validation strategies:

  • Amount of hidden layers (Convolution + Max Pooling)
  • Number of filters per layer
  • Filter size (H x H)
  • Pool size (B x B)

The best result found was obtained with the following values:

  • Amount of hidden layers (Convolution + Max Pooling): 2
  • Number of filters per layer: 64 on layer 1 and 128 on layer 2
  • Filter Size: (8 x 8)
  • Pool size (3x3)

After training for 30 epochs, an accuracy of 82% was reached in the validation and test sets, demonstrating a high capacity for generalization of the architecture found.


Criando uma arquitetura hipertunada e customizada de CNN (Rede Neural Convolucional) para o conjunto de dados Fashion MNIST com Python, Keras e Tensorflow.

Foram selecionados para hypertuning com as estratégias Grid Search e Validação Cruzada 5-fold os seguintes hiperparâmetros:

  • Quantidade de camadas ocultas (Convolução + Max Pooling)
  • Quantidade de filtros por camada
  • Tamanho do filtro (A x A)
  • Tamanho do pool (B x B)

O melhor resultado encontrado foi obtido com os seguintes valores:

  • Quantidade de camadas ocultas (Convolução + Max Pooling): 2
  • Quantidade de filtros por camada: 64 na camada 1 e 128 na camada 2
  • Tamanho do filtro: (8 x 8)
  • Tamanho do pool (3 x 3)

Após um treino de 30 épocas, alcançou-se uma acurácia nos conjuntos de validação e teste de 82%, demonstrando alta capacidade de generalização da arquitetura encontrada.


Projeto desenvolvido para a disciplina Deep Learning do curso de Especialização em Inteligência Artifical Aplicada, semestre 2021/2, do Instituto Federal de Goiás - Câmpus Goiânia.

You might also like...
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Fashion Landmark Estimation with HRNet
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

Owner
Danielle Almeida
Desenvolvedora de Software | Pesquisadora em Inteligência Artificial
Danielle Almeida
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 8, 2023
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 2, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 4, 2023
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022