BANA
This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation".
For more information, please checkout the project site [website] and the paper [arXiv].
Requirements
- Python >= 3.6
- PyTorch >= 1.3.0
- yacs (https://github.com/rbgirshick/yacs)
Getting started
The folder data
should be like this
data
└── VOCdevkit
└── VOC2012
├── JPEGImages
├── SegmentationClassAug
├── Annotations
├── ImageSets
├── BgMaskfromBoxes
└── Generation
├── Y_crf
└── Y_ret
git clone https://github.com/cvlab-yonsei/BANA.git
cd BANA
python stage1.py --config-file configs/stage1.yml --gpu-id 0 # For training a classification network
python stage2.py --config-file configs/stage2.yml --gpu-id 0 # For generating pseudo labels
Download our pseudo labels
- PASCAL VOC 2012 [Google Drive]
Bibtex
@inproceedings{oh2021background,
title = {Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation},
author = {Oh, Youngmin and Kim, Beomjun and Ham, Bumsub},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021},
}