Utilities and information for the signals.numer.ai tournament

Overview

dsignals

Utilities and information for the signals.numer.ai tournament

using eodhistoricaldata.com

eodhistoricaldata.com provides excellent historical price coverage for the signals universe. There are two main challenges with it:

  1. Ticker mapping from bloomberg to eod tickers
  2. Lack of coverage for Japan, Czech Republic and New Zealand

Building the ticker map

To build the mapping from bloomberg_ticker to eodhd, use:

python build_eodhd_map.py

This will retrieve:

  • live_universe (a small 40 KB file just listing the ~5,340 tickers in current round)
  • historical_targets (a large 150 MB file, and extract ~13,370 unique historical tickers)
  • the bloomberg to yahoo map courtesy of Liam @ numerai

And follow the conversion logic in the python code and manual overrides in db/eod-overrides.csv to build eodhd-map.csv in the following format:

bloomberg_ticker yahoo data_provider signals_ticker
MONY LN MONY.L eodhd MONY.LSE
ANIM3 BZ ANIM3.SA eodhd ANIM3.SA
CAO US eodhd CAO.US
7013 JP 7013.T yahoo 7013.T

Download quotes from the correct data_provider

First find EODHD_TOKEN = "put_your_token_here" in the download_quotes.py file and insert your eodhd api token. Then running:

python download_quotes.py

will download each quote from the appropriate source (eodhd or yahoo) saving each ticker to a separate pickle file under ./data/ticker_bin. As of October 2021, this results in 10,900+ ticker histories.

How you can help

  • Some amount of experimentation is needed with Korean tickers (KO vs KQ extension) to get better fills for ~50 tickers.
  • Bloomberg Singapore ticker prefixes are very different than the yahoo or eodhd tickers. We are extracting the live universe prefixes from numerai yahoo map, but historical Singapore tickers would need to be manually mapped if anyone is up for the challenge.
  • The rest of the tickers seem to work well -- all feedback and advice is appreciated.
You might also like...
🛠️ SLAMcore SLAM Utilities
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.
Owner
Degerhan Usluel
Degerhan Usluel
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

null 8 May 25, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

null 9 Dec 21, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

null 1 Feb 15, 2022
LBK 35 Dec 26, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Intel Labs 210 Jan 4, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

null 921 Dec 8, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 7, 2022