Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers
This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Data Compression of Turbulent Flow
This is an implementation of Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers
Requirements
- see requirements.txt
Instruction
- Global hyperparameters are configured in config.yml
- Hyperparameters can be found at process_control() in utils.py
Examples
-
Train vqvae, compression scale 1, regularization parameter
python train_vqvae.py --data_name Turb --model_name vqvae --control_name 1_exact-physcis_0.1-0
-
Test vqvae, compression scale 3, regularization parameter
python test_vqvae.py --data_name Turb --model_name vqvae --control_name 3_exact-physcis_0.1-0.0001
Results
- Schematic of the VQ-AE architecture.
- Comparing original and reconstructed 3D (a) stationary isotropic, (b) decaying isotropic, and (c) Taylor-Green vortex turbulence compressed by VQ-AE.
- (a) with and (b) without regularizations for PDFs of normalized longitudinal (left), transverse (middle) components of velocity gradient tensor, and Turbulence Kinetic Energy spectra (right) of stationary isotropic turbulence flow.
Acknowledgement
Mohammadreza Momenifar
Enmao Diao
Vahid Tarokh
Andrew D. Bragg