Hypercomplex Neural Networks with PyTorch

Overview

HyperNets

Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate research in this topic.

Lightweight Convolutional Neural Networks By Hypercomplex Parameterization

Eleonora Grassucci, Aston Zhang, and Danilo Comminiello

[Abstract on OpenReview] [Paper on OpenReview]

Abstract

Hypercomplex neural networks have proved to reduce the overall number of parameters while ensuring valuable performances by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models. Our method grasps the convolution rules and the filters organization directly from data without requiring a rigidly predefined domain structure to follow. The proposed approach is flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multidimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed method operates with 1/n free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts.

Parameterized Hypercomplex Convolutional (PHC) Layer

The core of the approach is the sum of Kronecker products which grasps the convolution rule and the filters organization directly from data. The higlights of our approach is defined in:

def kronecker_product1(self, A, F):
  siz1 = torch.Size(torch.tensor(A.shape[-2:]) * torch.tensor(F.shape[-4:-2]))
  siz2 = torch.Size(torch.tensor(F.shape[-2:]))
  res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) * F.unsqueeze(-4).unsqueeze(-6)
  siz0 = res.shape[:1]
  out = res.reshape(siz0 + siz1 + siz2)
  return out
 
def forward(self, input):
  self.weight = torch.sum(self.kronecker_product1(self.A, self.F), dim=0)
  input = input.type(dtype=self.weight.type())      
  return F.conv2d(input, weight=self.weight, stride=self.stride, padding=self.padding)

Te PHC layer, by setting n=4, is able to subsume the Hamilton rule to organize filters in the convolution as:

Usage

Tutorials

The folder tutorials contain a set of tutorial to understand the Parameterized Hypercomplex Multiplication (PHM) layer and the Parameterized Hypercomplex Convolutional (PHC) layer. We develop simple toy examples to learn the matrices A that define algebra rules in order to demonstrate the effectiveness of the proposed approach.

  • PHM tutorial.ipynb is a simple tutorial which shows how the PHM layer learns the Hamilton product between two pure quaternions.
  • PHC tutorial.ipynb is a simple tutorial which shows how the PHC layer learn the Hamilton rule to organize filters in convolution.
  • Toy regression examples with PHM.ipynb is a notebook containing some regression tasks.

Experiments on Image Classification

To reproduce image classification experiments, please refer to the image-classification folder.

  • pip install -r requirements.txt.
  • Choose the configurations in configs and run the experiment:

python main.py --TextArgs=config_name.txt.

The experiment will be directly tracked on Weight&Biases.

Experiments on Sound Event Detection

To reproduce sound event detection experiments, please refer to the sound-event-detection folder.

  • pip install -r requirements.txt.

We follow the instructions in the original repository for the L3DAS21 dataset:

  • Download the dataset:

python download_dataset.py --task Task2 --set_type train --output_path DATASETS/Task2

python download_dataset.py --task Task2 --set_type dev --output_path DATASETS/Task2

  • Preprocess the dataset:

python preprocessing.py --task 2 --input_path DATASETS/Task2 --num_mics 1 --frame_len 100

Specify num_mics=2 and output_phase=True to perform experiments up to 16-channel inputs.

  • Run the experiment:

python train_baseline_task2.py

Specify the hyperparameters options. We perform experiments with epochs=1000, batch_size=16 and input_channels=4/8/16 on a single Tesla V100-32GB GPU.

  • Run the evaluation:

python evaluate_baseline_task2.py

Specify the hyperparameters options.

More will be added

Soon: PHC layer for 1D convolutions!

Similar reporitories

Quaternion layers are borrowed from:

Cite

You might also like...
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Visualization toolkit for neural networks in PyTorch! Demo -->
Visualization toolkit for neural networks in PyTorch! Demo --

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

PyTorch implementation of
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Comments
  • Any possibility for a TensorFlow implementation?

    Any possibility for a TensorFlow implementation?

    Hello. I have a few different projects that could potentially benefit from these algorithms. However, these projects and classes all use TensorFlow as their main framework. While rewriting these layers would probably not be too difficult on my end, are there any plans for a TensorFlow port? If not, would it be possible for one to be written?

    Also, just to get an idea, how difficult is it generally to port PyTorch layers to TensorFlow? How much debugging and messing around would one be looking at?

    enhancement 
    opened by TensorHusker 3
  • Unable to run Image classification experiment

    Unable to run Image classification experiment

    Sir, I am willing to run your experimentation on image classification but failed , can you help how to compare performance of HyperComplex Neuralnetwork with Hamiltonian product and Qronecker Product on a image dataset.

    Capture

    opened by singhsukhendra 1
Owner
Eleonora Grassucci
PhD Candidate in ICT at ISPAMM Lab, Sapienza UniversitĂ  di Roma, Data Scientist.
Eleonora Grassucci
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Intel Labs 210 Jan 4, 2023
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 4, 2023
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 8, 2023
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

null 4.2k Jan 1, 2023
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 1, 2022