Real-time Neural Representation Fusion for Robust Volumetric Mapping

Overview

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping

Paper | Supplementary

teaser

This repository contains the implementation of the paper:

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping
Stefan Lionar*, Lukas Schmid*, Cesar Cadena, Roland Siegwart, and Andrei Cramariuc
International Conference on 3D Vision (3DV) 2021
(*equal contribution)

If you find our code or paper useful, please consider citing us:

@inproceedings{lionar2021neuralblox,
 title = {NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping},
 author={Stefan Lionar, Lukas Schmid, Cesar Cadena, Roland Siegwart, Andrei Cramariuc},
 booktitle = {International Conference on 3D Vision (3DV)},
 year = {2021}}

Installation

conda env create -f environment.yaml
conda activate neuralblox
pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Note: Make sure torch-scatter and PyTorch have the same cuda toolkit version. If PyTorch has a different cuda toolkit version, run:

conda install pytorch==1.4.0 cudatoolkit=10.1 -c pytorch

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Optional: For a noticeably faster inference on CPU-only settings, upgrade PyTorch and PyTorch Scatter to a newer version:

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install --upgrade --no-deps --force-reinstall torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.7.1+cu101.html

Demo

To generate meshes using our pretrained models and evaluation dataset, you can select several configurations below and run it.

python generate_sequential.py configs/fusion/pretrained/redwood_0.5voxel_demo.yaml
python generate_sequential.py configs/fusion/pretrained/redwood_1voxel_demo.yaml
python generate_sequential.py configs/fusion/pretrained/redwood_1voxel_demo_cpu.yaml --no_cuda
  • The mesh will be generated to out_mesh/mesh folder.
  • To add noise, change the values under test.scene.noise in the config files.

Training backbone encoder and decoder

The backbone encoder and decoder mainly follow Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks) with some modifications adapted for our use case. Our pretrained model is provided in this repository.

Dataset

ShapeNet

The proprocessed ShapeNet dataset is from Occupancy Networks (https://github.com/autonomousvision/occupancy_networks). You can download it (73.4 GB) by running:

bash scripts/download_shapenet_pc.sh

After that, you should have the dataset in data/ShapeNet folder.

Training

To train the backbone network from scratch, run

python train_backbone.py configs/pointcloud/shapenet_grid24_pe.yaml

Latent code fusion

The pretrained fusion network is also provided in this repository.

Training dataset

To train from scratch, you can download our preprocessed Redwood Indoor RGBD Scan dataset by running:

bash scripts/download_redwood_preprocessed.sh

We align the gravity direction to be the same as ShapeNet ([0,1,0]) and convert the RGBD scans following ShapeNet format.

More information about the dataset is provided here: http://redwood-data.org/indoor_lidar_rgbd/.

Training

To train the fusion network from scratch, run

python train_fusion.py configs/fusion/train_fusion_redwood.yaml

Adjust the path to the encoder-decoder model in training.backbone_file of the .yaml file if necessary.

Generation

python generate_sequential.py CONFIG.yaml

If you are interested in generating the meshes from other dataset, e.g., ScanNet:

  • Structure the dataset following the format in demo/redwood_apartment_13k.
  • Adjust path, data_preprocessed_interval and intrinsics in the config file.
  • If necessary, align the dataset to have the same gravity direction as ShapeNet by adjusting align in the config file.

For example,

# ScanNet scene ID 0
python generate_sequential.py configs/fusion/pretrained/scannet_000.yaml

# ScanNet scene ID 24
python generate_sequential.py configs/fusion/pretrained/scannet_024.yaml

To use your own models, replace test.model_file (encoder-decoder) and test.merging_model_file (fusion network) in the config file to the path of your models.

Evaluation

You can evaluate the predicted meshes with respect to a ground truth mesh by following the steps below:

  1. Install CloudCompare
sudo apt install cloudcompare
  1. Copy a ground truth mesh (no RGB information expected) to evaluation/mesh_gt
  2. Copy prediction meshes to evaluation/mesh_pred
  3. If the prediction mesh does not contain RGB information, such as the output from our method, run:
python evaluate.py

Else, if it contains RGB information, such as the output from Voxblox, run:

python evaluate.py --color_mesh

We provide the trimmed mesh used for the ground truth of our quantitative evaluation. It can be downloaded here: https://polybox.ethz.ch/index.php/s/gedC9YpQPMPiucU/download

Lastly, to evaluate prediction meshes with respect to the trimmed mesh as ground truth, run:

python evaluate.py --demo

Or for colored mesh (e.g. from Voxblox):

python evaluate.py --demo --color_mesh

evaluation.csv will be generated to evaluation directory.

Acknowledgement

Some parts of the code are inherited from the official repository of Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks).

You might also like...
Python and C++ implementation of
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

 This repository contains the code for the CVPR 2020 paper
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Owner
ETHZ ASL
ETHZ ASL
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 8, 2023
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 1, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 3, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 4, 2023
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

null 4 Sep 23, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 2, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 7, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022