Hi,
I am trying to fine-tune convnext large model on the dataset in coco format, and after solving lot of error i am able to run training by using utils/train.py .
But i get mmdet - ERROR - The testing results of the whole dataset is empty.
when i print out the output, it gives an empty array.
Since the dataset is strictly detection based , i commented out mask details from the config which now looks like this 👍
_base_ = [
'../_base_/models/cascade_mask_rcnn_convnext_fpn.py',
../_base_/datasets/custom_dataset_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
backbone=dict(
in_chans=3,
depths=[3, 3, 27, 3],
dims=[192, 384, 768, 1536],
drop_path_rate=0.7,
layer_scale_init_value=1.0,
out_indices=[0, 1, 2, 3],
),
neck=dict(in_channels=[192, 384, 768, 1536]),
roi_head=dict(
bbox_head=[
dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=97,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
reg_decoded_bbox=True,
norm_cfg=dict(type='SyncBN', requires_grad=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=97,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1]),
reg_class_agnostic=False,
reg_decoded_bbox=True,
norm_cfg=dict(type='SyncBN', requires_grad=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=97,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067]),
reg_class_agnostic=False,
reg_decoded_bbox=True,
norm_cfg=dict(type='SyncBN', requires_grad=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=10.0))
]))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# augmentation strategy originates from DETR / Sparse RCNN
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AutoAugment',
policies=[
[
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
multiscale_mode='value',
keep_ratio=True)
],
[
dict(type='Resize',
img_scale=[(400, 1333), (500, 1333), (600, 1333)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
multiscale_mode='value',
override=True,
keep_ratio=True)
]
]),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
data = dict(train=dict(pipeline=train_pipeline))
optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW',
lr=0.0000002, betas=(0.9, 0.999), weight_decay=0.05,
paramwise_cfg={'decay_rate': 0.7,
'decay_type': 'layer_wise',
'num_layers': 12})
lr_config = dict(step=[3, 9, 27, 33])
runner = dict(type='EpochBasedRunnerAmp', max_epochs=36)
# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
type="DistOptimizerHook",
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
use_fp16=False,
)
And the corresponsing base/models/cascade_mask_rcnn_convnext_fpn.py config looks like :
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# model settings
model = dict(
type='CascadeRCNN',
pretrained='checkpoint/cascade_mask_rcnn_convnext_large_22k_3x.pth',
backbone=dict(
type='ConvNeXt',
in_chans=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.2,
layer_scale_init_value=1e-6,
out_indices=[0, 1, 2, 3],
),
neck=dict(
type='FPN',
in_channels=[128, 256, 512, 1024],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
roi_head=dict(
type='CascadeRoIHead',
num_stages=3,
stage_loss_weights=[1, 0.5, 0.25],
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=97,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=97,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=97,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
]),
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_per_img=2000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
#mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
#mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
#mask_size=28,
pos_weight=-1,
debug=False)
]),
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
Do i need to prune or update some layer's information for which i am getting below error :
unexpected key in source state_dict: backbone.downsample_layers.0.0.weight, backbone.downsample_layers.0.0.bias, backbone.downsample_layers.0.1.weight, backbone.downsample_layers.0.1.bias, backbone.downsample_layers.1.0.weight, backbone.downsample_layers.1.0.bias, backbone.downsample_layers.1.1.weight, backbone.downsample_layers.1.1.bias, backbone.downsample_layers.2.0.weight, backbone.downsample_layers.2.0.bias, backbone.downsample_layers.2.1.weight, backbone.downsample_layers.2.1.bias, backbone.downsample_layers.3.0.weight, backbone.downsample_layers.3.0.bias, backbone.downsample_layers.3.1.weight, backbone.downsample_layers.3.1.bias, backbone.stages.0.0.gamma, backbone.stages.0.0.dwconv.weight, backbone.stages.0.0.dwconv.bias, backbone.stages.0.0.norm.weight, backbone.stages.0.0.norm.bias, backbone.stages.0.0.pwconv1.weight, backbone.stages.0.0.pwconv1.bias, backbone.stages.0.0.pwconv2.weight, backbone.stages.0.0.pwconv2.bias, backbone.stages.0.1.gamma, backbone.stages.0.1.dwconv.weight, backbone.stages.0.1.dwconv.bias, backbone.stages.0.1.norm.weight, backbone.stages.0.1.norm.bias, backbone.stages.0.1.pwconv1.weight, backbone.stages.0.1.pwconv1.bias, backbone.stages.0.1.pwconv2.weight, backbone.stages.0.1.pwconv2.bias, backbone.stages.0.2.gamma, backbone.stages.0.2.dwconv.weight, backbone.stages.0.2.dwconv.bias, backbone.stages.0.2.norm.weight, backbone.stages.0.2.norm.bias, backbone.stages.0.2.pwconv1.weight, backbone.stages.0.2.pwconv1.bias, backbone.stages.0.2.pwconv2.weight, backbone.stages.0.2.pwconv2.bias, backbone.stages.1.0.gamma, backbone.stages.1.0.dwconv.weight, backbone.stages.1.0.dwconv.bias, backbone.stages.1.0.norm.weight, backbone.stages.1.0.norm.bias, backbone.stages.1.0.pwconv1.weight, backbone.stages.1.0.pwconv1.bias, backbone.stages.1.0.pwconv2.weight, backbone.stages.1.0.pwconv2.bias, backbone.stages.1.1.gamma, backbone.stages.1.1.dwconv.weight, backbone.stages.1.1.dwconv.bias, backbone.stages.1.1.norm.weight, backbone.stages.1.1.norm.bias, backbone.stages.1.1.pwconv1.weight, backbone.stages.1.1.pwconv1.bias, backbone.stages.1.1.pwconv2.weight, backbone.stages.1.1.pwconv2.bias, backbone.stages.1.2.gamma, backbone.stages.1.2.dwconv.weight, backbone.stages.1.2.dwconv.bias, backbone.stages.1.2.norm.weight, backbone.stages.1.2.norm.bias, backbone.stages.1.2.pwconv1.weight, backbone.stages.1.2.pwconv1.bias, backbone.stages.1.2.pwconv2.weight, backbone.stages.1.2.pwconv2.bias, backbone.stages.2.0.gamma, backbone.stages.2.0.dwconv.weight, backbone.stages.2.0.dwconv.bias, backbone.stages.2.0.norm.weight, backbone.stages.2.0.norm.bias, backbone.stages.2.0.pwconv1.weight, backbone.stages.2.0.pwconv1.bias, backbone.stages.2.0.pwconv2.weight, backbone.stages.2.0.pwconv2.bias, backbone.stages.2.1.gamma, backbone.stages.2.1.dwconv.weight, backbone.stages.2.1.dwconv.bias, backbone.stages.2.1.norm.weight, backbone.stages.2.1.norm.bias, backbone.stages.2.1.pwconv1.weight, backbone.stages.2.1.pwconv1.bias, backbone.stages.2.1.pwconv2.weight, backbone.stages.2.1.pwconv2.bias, backbone.stages.2.2.gamma, backbone.stages.2.2.dwconv.weight, backbone.stages.2.2.dwconv.bias, backbone.stages.2.2.norm.weight, backbone.stages.2.2.norm.bias, backbone.stages.2.2.pwconv1.weight, backbone.stages.2.2.pwconv1.bias, backbone.stages.2.2.pwconv2.weight, backbone.stages.2.2.pwconv2.bias, backbone.stages.2.3.gamma, backbone.stages.2.3.dwconv.weight, backbone.stages.2.3.dwconv.bias, backbone.stages.2.3.norm.weight, backbone.stages.2.3.norm.bias, backbone.stages.2.3.pwconv1.weight, backbone.stages.2.3.pwconv1.bias, backbone.stages.2.3.pwconv2.weight, backbone.stages.2.3.pwconv2.bias, backbone.stages.2.4.gamma, backbone.stages.2.4.dwconv.weight, backbone.stages.2.4.dwconv.bias, backbone.stages.2.4.norm.weight, backbone.stages.2.4.norm.bias, backbone.stages.2.4.pwconv1.weight, backbone.stages.2.4.pwconv1.bias, backbone.stages.2.4.pwconv2.weight, backbone.stages.2.4.pwconv2.bias, backbone.stages.2.5.gamma, backbone.stages.2.5.dwconv.weight, backbone.stages.2.5.dwconv.bias, backbone.stages.2.5.norm.weight, backbone.stages.2.5.norm.bias, backbone.stages.2.5.pwconv1.weight, backbone.stages.2.5.pwconv1.bias, backbone.stages.2.5.pwconv2.weight, backbone.stages.2.5.pwconv2.bias, backbone.stages.2.6.gamma, backbone.stages.2.6.dwconv.weight, backbone.stages.2.6.dwconv.bias, backbone.stages.2.6.norm.weight, backbone.stages.2.6.norm.bias, backbone.stages.2.6.pwconv1.weight, backbone.stages.2.6.pwconv1.bias, backbone.stages.2.6.pwconv2.weight, backbone.stages.2.6.pwconv2.bias, backbone.stages.2.7.gamma, backbone.stages.2.7.dwconv.weight, backbone.stages.2.7.dwconv.bias, backbone.stages.2.7.norm.weight, backbone.stages.2.7.norm.bias, backbone.stages.2.7.pwconv1.weight, backbone.stages.2.7.pwconv1.bias, backbone.stages.2.7.pwconv2.weight, backbone.stages.2.7.pwconv2.bias, backbone.stages.2.8.gamma, backbone.stages.2.8.dwconv.weight, backbone.stages.2.8.dwconv.bias, backbone.stages.2.8.norm.weight, backbone.stages.2.8.norm.bias, backbone.stages.2.8.pwconv1.weight, backbone.stages.2.8.pwconv1.bias, backbone.stages.2.8.pwconv2.weight, backbone.stages.2.8.pwconv2.bias, backbone.stages.2.9.gamma, backbone.stages.2.9.dwconv.weight, backbone.stages.2.9.dwconv.bias, backbone.stages.2.9.norm.weight, backbone.stages.2.9.norm.bias, backbone.stages.2.9.pwconv1.weight, backbone.stages.2.9.pwconv1.bias, backbone.stages.2.9.pwconv2.weight, backbone.stages.2.9.pwconv2.bias, backbone.stages.2.10.gamma, backbone.stages.2.10.dwconv.weight, backbone.stages.2.10.dwconv.bias, backbone.stages.2.10.norm.weight, backbone.stages.2.10.norm.bias, backbone.stages.2.10.pwconv1.weight, backbone.stages.2.10.pwconv1.bias, backbone.stages.2.10.pwconv2.weight, backbone.stages.2.10.pwconv2.bias, backbone.stages.2.11.gamma, backbone.stages.2.11.dwconv.weight, backbone.stages.2.11.dwconv.bias, backbone.stages.2.11.norm.weight, backbone.stages.2.11.norm.bias, backbone.stages.2.11.pwconv1.weight, backbone.stages.2.11.pwconv1.bias, backbone.stages.2.11.pwconv2.weight, backbone.stages.2.11.pwconv2.bias, backbone.stages.2.12.gamma, backbone.stages.2.12.dwconv.weight, backbone.stages.2.12.dwconv.bias, backbone.stages.2.12.norm.weight, backbone.stages.2.12.norm.bias, backbone.stages.2.12.pwconv1.weight, backbone.stages.2.12.pwconv1.bias, backbone.stages.2.12.pwconv2.weight, backbone.stages.2.12.pwconv2.bias, backbone.stages.2.13.gamma, backbone.stages.2.13.dwconv.weight, backbone.stages.2.13.dwconv.bias, backbone.stages.2.13.norm.weight, backbone.stages.2.13.norm.bias, backbone.stages.2.13.pwconv1.weight, backbone.stages.2.13.pwconv1.bias, backbone.stages.2.13.pwconv2.weight, backbone.stages.2.13.pwconv2.bias, backbone.stages.2.14.gamma, backbone.stages.2.14.dwconv.weight, backbone.stages.2.14.dwconv.bias, backbone.stages.2.14.norm.weight, backbone.stages.2.14.norm.bias, backbone.stages.2.14.pwconv1.weight, backbone.stages.2.14.pwconv1.bias, backbone.stages.2.14.pwconv2.weight, backbone.stages.2.14.pwconv2.bias, backbone.stages.2.15.gamma, backbone.stages.2.15.dwconv.weight, backbone.stages.2.15.dwconv.bias, backbone.stages.2.15.norm.weight, backbone.stages.2.15.norm.bias, backbone.stages.2.15.pwconv1.weight, backbone.stages.2.15.pwconv1.bias, backbone.stages.2.15.pwconv2.weight, backbone.stages.2.15.pwconv2.bias, backbone.stages.2.16.gamma, backbone.stages.2.16.dwconv.weight, backbone.stages.2.16.dwconv.bias, backbone.stages.2.16.norm.weight, backbone.stages.2.16.norm.bias, backbone.stages.2.16.pwconv1.weight, backbone.stages.2.16.pwconv1.bias, backbone.stages.2.16.pwconv2.weight, backbone.stages.2.16.pwconv2.bias, backbone.stages.2.17.gamma, backbone.stages.2.17.dwconv.weight, backbone.stages.2.17.dwconv.bias, backbone.stages.2.17.norm.weight, backbone.stages.2.17.norm.bias, backbone.stages.2.17.pwconv1.weight, backbone.stages.2.17.pwconv1.bias, backbone.stages.2.17.pwconv2.weight, backbone.stages.2.17.pwconv2.bias, backbone.stages.2.18.gamma, backbone.stages.2.18.dwconv.weight, backbone.stages.2.18.dwconv.bias, backbone.stages.2.18.norm.weight, backbone.stages.2.18.norm.bias, backbone.stages.2.18.pwconv1.weight, backbone.stages.2.18.pwconv1.bias, backbone.stages.2.18.pwconv2.weight, backbone.stages.2.18.pwconv2.bias, backbone.stages.2.19.gamma, backbone.stages.2.19.dwconv.weight, backbone.stages.2.19.dwconv.bias, backbone.stages.2.19.norm.weight, backbone.stages.2.19.norm.bias, backbone.stages.2.19.pwconv1.weight, backbone.stages.2.19.pwconv1.bias, backbone.stages.2.19.pwconv2.weight, backbone.stages.2.19.pwconv2.bias, backbone.stages.2.20.gamma, backbone.stages.2.20.dwconv.weight, backbone.stages.2.20.dwconv.bias, backbone.stages.2.20.norm.weight, backbone.stages.2.20.norm.bias, backbone.stages.2.20.pwconv1.weight, backbone.stages.2.20.pwconv1.bias, backbone.stages.2.20.pwconv2.weight, backbone.stages.2.20.pwconv2.bias, backbone.stages.2.21.gamma, backbone.stages.2.21.dwconv.weight, backbone.stages.2.21.dwconv.bias, backbone.stages.2.21.norm.weight, backbone.stages.2.21.norm.bias, backbone.stages.2.21.pwconv1.weight, backbone.stages.2.21.pwconv1.bias, backbone.stages.2.21.pwconv2.weight, backbone.stages.2.21.pwconv2.bias, backbone.stages.2.22.gamma, backbone.stages.2.22.dwconv.weight, backbone.stages.2.22.dwconv.bias, backbone.stages.2.22.norm.weight, backbone.stages.2.22.norm.bias, backbone.stages.2.22.pwconv1.weight, backbone.stages.2.22.pwconv1.bias, backbone.stages.2.22.pwconv2.weight, backbone.stages.2.22.pwconv2.bias, backbone.stages.2.23.gamma, backbone.stages.2.23.dwconv.weight, backbone.stages.2.23.dwconv.bias, backbone.stages.2.23.norm.weight, backbone.stages.2.23.norm.bias, backbone.stages.2.23.pwconv1.weight, backbone.stages.2.23.pwconv1.bias, backbone.stages.2.23.pwconv2.weight, backbone.stages.2.23.pwconv2.bias, backbone.stages.2.24.gamma, backbone.stages.2.24.dwconv.weight, backbone.stages.2.24.dwconv.bias, backbone.stages.2.24.norm.weight, backbone.stages.2.24.norm.bias, backbone.stages.2.24.pwconv1.weight, backbone.stages.2.24.pwconv1.bias, backbone.stages.2.24.pwconv2.weight, backbone.stages.2.24.pwconv2.bias, backbone.stages.2.25.gamma, backbone.stages.2.25.dwconv.weight, backbone.stages.2.25.dwconv.bias, backbone.stages.2.25.norm.weight, backbone.stages.2.25.norm.bias, backbone.stages.2.25.pwconv1.weight, backbone.stages.2.25.pwconv1.bias, backbone.stages.2.25.pwconv2.weight, backbone.stages.2.25.pwconv2.bias, backbone.stages.2.26.gamma, backbone.stages.2.26.dwconv.weight, backbone.stages.2.26.dwconv.bias, backbone.stages.2.26.norm.weight, backbone.stages.2.26.norm.bias, backbone.stages.2.26.pwconv1.weight, backbone.stages.2.26.pwconv1.bias, backbone.stages.2.26.pwconv2.weight, backbone.stages.2.26.pwconv2.bias, backbone.stages.3.0.gamma, backbone.stages.3.0.dwconv.weight, backbone.stages.3.0.dwconv.bias, backbone.stages.3.0.norm.weight, backbone.stages.3.0.norm.bias, backbone.stages.3.0.pwconv1.weight, backbone.stages.3.0.pwconv1.bias, backbone.stages.3.0.pwconv2.weight, backbone.stages.3.0.pwconv2.bias, backbone.stages.3.1.gamma, backbone.stages.3.1.dwconv.weight, backbone.stages.3.1.dwconv.bias, backbone.stages.3.1.norm.weight, backbone.stages.3.1.norm.bias, backbone.stages.3.1.pwconv1.weight, backbone.stages.3.1.pwconv1.bias, backbone.stages.3.1.pwconv2.weight, backbone.stages.3.1.pwconv2.bias, backbone.stages.3.2.gamma, backbone.stages.3.2.dwconv.weight, backbone.stages.3.2.dwconv.bias, backbone.stages.3.2.norm.weight, backbone.stages.3.2.norm.bias, backbone.stages.3.2.pwconv1.weight, backbone.stages.3.2.pwconv1.bias, backbone.stages.3.2.pwconv2.weight, backbone.stages.3.2.pwconv2.bias, backbone.norm0.weight, backbone.norm0.bias, backbone.norm1.weight, backbone.norm1.bias, backbone.norm2.weight, backbone.norm2.bias, backbone.norm3.weight, backbone.norm3.bias, neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.lateral_convs.3.conv.weight, neck.lateral_convs.3.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, rpn_head.rpn_conv.weight, rpn_head.rpn_conv.bias, rpn_head.rpn_cls.weight, rpn_head.rpn_cls.bias, rpn_head.rpn_reg.weight, rpn_head.rpn_reg.bias, roi_head.bbox_head.0.fc_cls.weight, roi_head.bbox_head.0.fc_cls.bias, roi_head.bbox_head.0.fc_reg.weight, roi_head.bbox_head.0.fc_reg.bias, roi_head.bbox_head.0.shared_convs.0.conv.weight, roi_head.bbox_head.0.shared_convs.0.bn.weight, roi_head.bbox_head.0.shared_convs.0.bn.bias, roi_head.bbox_head.0.shared_convs.0.bn.running_mean, roi_head.bbox_head.0.shared_convs.0.bn.running_var, roi_head.bbox_head.0.shared_convs.0.bn.num_batches_tracked, roi_head.bbox_head.0.shared_convs.1.conv.weight, roi_head.bbox_head.0.shared_convs.1.bn.weight, roi_head.bbox_head.0.shared_convs.1.bn.bias, roi_head.bbox_head.0.shared_convs.1.bn.running_mean, roi_head.bbox_head.0.shared_convs.1.bn.running_var, roi_head.bbox_head.0.shared_convs.1.bn.num_batches_tracked, roi_head.bbox_head.0.shared_convs.2.conv.weight, roi_head.bbox_head.0.shared_convs.2.bn.weight, roi_head.bbox_head.0.shared_convs.2.bn.bias, roi_head.bbox_head.0.shared_convs.2.bn.running_mean, roi_head.bbox_head.0.shared_convs.2.bn.running_var, roi_head.bbox_head.0.shared_convs.2.bn.num_batches_tracked, roi_head.bbox_head.0.shared_convs.3.conv.weight, roi_head.bbox_head.0.shared_convs.3.bn.weight, roi_head.bbox_head.0.shared_convs.3.bn.bias, roi_head.bbox_head.0.shared_convs.3.bn.running_mean, roi_head.bbox_head.0.shared_convs.3.bn.running_var, roi_head.bbox_head.0.shared_convs.3.bn.num_batches_tracked, roi_head.bbox_head.0.shared_fcs.0.weight, roi_head.bbox_head.0.shared_fcs.0.bias, roi_head.bbox_head.1.fc_cls.weight, roi_head.bbox_head.1.fc_cls.bias, roi_head.bbox_head.1.fc_reg.weight, roi_head.bbox_head.1.fc_reg.bias, roi_head.bbox_head.1.shared_convs.0.conv.weight, roi_head.bbox_head.1.shared_convs.0.bn.weight, roi_head.bbox_head.1.shared_convs.0.bn.bias, roi_head.bbox_head.1.shared_convs.0.bn.running_mean, roi_head.bbox_head.1.shared_convs.0.bn.running_var, roi_head.bbox_head.1.shared_convs.0.bn.num_batches_tracked, roi_head.bbox_head.1.shared_convs.1.conv.weight, roi_head.bbox_head.1.shared_convs.1.bn.weight, roi_head.bbox_head.1.shared_convs.1.bn.bias, roi_head.bbox_head.1.shared_convs.1.bn.running_mean, roi_head.bbox_head.1.shared_convs.1.bn.running_var, roi_head.bbox_head.1.shared_convs.1.bn.num_batches_tracked, roi_head.bbox_head.1.shared_convs.2.conv.weight, roi_head.bbox_head.1.shared_convs.2.bn.weight, roi_head.bbox_head.1.shared_convs.2.bn.bias, roi_head.bbox_head.1.shared_convs.2.bn.running_mean, roi_head.bbox_head.1.shared_convs.2.bn.running_var, roi_head.bbox_head.1.shared_convs.2.bn.num_batches_tracked, roi_head.bbox_head.1.shared_convs.3.conv.weight, roi_head.bbox_head.1.shared_convs.3.bn.weight, roi_head.bbox_head.1.shared_convs.3.bn.bias, roi_head.bbox_head.1.shared_convs.3.bn.running_mean, roi_head.bbox_head.1.shared_convs.3.bn.running_var, roi_head.bbox_head.1.shared_convs.3.bn.num_batches_tracked, roi_head.bbox_head.1.shared_fcs.0.weight, roi_head.bbox_head.1.shared_fcs.0.bias, roi_head.bbox_head.2.fc_cls.weight, roi_head.bbox_head.2.fc_cls.bias, roi_head.bbox_head.2.fc_reg.weight, roi_head.bbox_head.2.fc_reg.bias, roi_head.bbox_head.2.shared_convs.0.conv.weight, roi_head.bbox_head.2.shared_convs.0.bn.weight, roi_head.bbox_head.2.shared_convs.0.bn.bias, roi_head.bbox_head.2.shared_convs.0.bn.running_mean, roi_head.bbox_head.2.shared_convs.0.bn.running_var, roi_head.bbox_head.2.shared_convs.0.bn.num_batches_tracked, roi_head.bbox_head.2.shared_convs.1.conv.weight, roi_head.bbox_head.2.shared_convs.1.bn.weight, roi_head.bbox_head.2.shared_convs.1.bn.bias, roi_head.bbox_head.2.shared_convs.1.bn.running_mean, roi_head.bbox_head.2.shared_convs.1.bn.running_var, roi_head.bbox_head.2.shared_convs.1.bn.num_batches_tracked, roi_head.bbox_head.2.shared_convs.2.conv.weight, roi_head.bbox_head.2.shared_convs.2.bn.weight, roi_head.bbox_head.2.shared_convs.2.bn.bias, roi_head.bbox_head.2.shared_convs.2.bn.running_mean, roi_head.bbox_head.2.shared_convs.2.bn.running_var, roi_head.bbox_head.2.shared_convs.2.bn.num_batches_tracked, roi_head.bbox_head.2.shared_convs.3.conv.weight, roi_head.bbox_head.2.shared_convs.3.bn.weight, roi_head.bbox_head.2.shared_convs.3.bn.bias, roi_head.bbox_head.2.shared_convs.3.bn.running_mean, roi_head.bbox_head.2.shared_convs.3.bn.running_var, roi_head.bbox_head.2.shared_convs.3.bn.num_batches_tracked, roi_head.bbox_head.2.shared_fcs.0.weight, roi_head.bbox_head.2.shared_fcs.0.bias, roi_head.mask_head.0.convs.0.conv.weight, roi_head.mask_head.0.convs.0.conv.bias, roi_head.mask_head.0.convs.1.conv.weight, roi_head.mask_head.0.convs.1.conv.bias, roi_head.mask_head.0.convs.2.conv.weight, roi_head.mask_head.0.convs.2.conv.bias, roi_head.mask_head.0.convs.3.conv.weight, roi_head.mask_head.0.convs.3.conv.bias, roi_head.mask_head.0.upsample.weight, roi_head.mask_head.0.upsample.bias, roi_head.mask_head.0.conv_logits.weight, roi_head.mask_head.0.conv_logits.bias, roi_head.mask_head.1.convs.0.conv.weight, roi_head.mask_head.1.convs.0.conv.bias, roi_head.mask_head.1.convs.1.conv.weight, roi_head.mask_head.1.convs.1.conv.bias, roi_head.mask_head.1.convs.2.conv.weight, roi_head.mask_head.1.convs.2.conv.bias, roi_head.mask_head.1.convs.3.conv.weight, roi_head.mask_head.1.convs.3.conv.bias, roi_head.mask_head.1.upsample.weight, roi_head.mask_head.1.upsample.bias, roi_head.mask_head.1.conv_logits.weight, roi_head.mask_head.1.conv_logits.bias, roi_head.mask_head.2.convs.0.conv.weight, roi_head.mask_head.2.convs.0.conv.bias, roi_head.mask_head.2.convs.1.conv.weight, roi_head.mask_head.2.convs.1.conv.bias, roi_head.mask_head.2.convs.2.conv.weight, roi_head.mask_head.2.convs.2.conv.bias, roi_head.mask_head.2.convs.3.conv.weight, roi_head.mask_head.2.convs.3.conv.bias, roi_head.mask_head.2.upsample.weight, roi_head.mask_head.2.upsample.bias, roi_head.mask_head.2.conv_logits.weight, roi_head.mask_head.2.conv_logits.bias
missing keys in source state_dict: downsample_layers.0.0.weight, downsample_layers.0.0.bias, downsample_layers.0.1.weight, downsample_layers.0.1.bias, downsample_layers.1.0.weight, downsample_layers.1.0.bias, downsample_layers.1.1.weight, downsample_layers.1.1.bias, downsample_layers.2.0.weight, downsample_layers.2.0.bias, downsample_layers.2.1.weight, downsample_layers.2.1.bias, downsample_layers.3.0.weight, downsample_layers.3.0.bias, downsample_layers.3.1.weight, downsample_layers.3.1.bias, stages.0.0.gamma, stages.0.0.dwconv.weight, stages.0.0.dwconv.bias, stages.0.0.norm.weight, stages.0.0.norm.bias, stages.0.0.pwconv1.weight, stages.0.0.pwconv1.bias, stages.0.0.pwconv2.weight, stages.0.0.pwconv2.bias, stages.0.1.gamma, stages.0.1.dwconv.weight, stages.0.1.dwconv.bias, stages.0.1.norm.weight, stages.0.1.norm.bias, stages.0.1.pwconv1.weight, stages.0.1.pwconv1.bias, stages.0.1.pwconv2.weight, stages.0.1.pwconv2.bias, stages.0.2.gamma, stages.0.2.dwconv.weight, stages.0.2.dwconv.bias, stages.0.2.norm.weight, stages.0.2.norm.bias, stages.0.2.pwconv1.weight, stages.0.2.pwconv1.bias, stages.0.2.pwconv2.weight, stages.0.2.pwconv2.bias, stages.1.0.gamma, stages.1.0.dwconv.weight, stages.1.0.dwconv.bias, stages.1.0.norm.weight, stages.1.0.norm.bias, stages.1.0.pwconv1.weight, stages.1.0.pwconv1.bias, stages.1.0.pwconv2.weight, stages.1.0.pwconv2.bias, stages.1.1.gamma, stages.1.1.dwconv.weight, stages.1.1.dwconv.bias, stages.1.1.norm.weight, stages.1.1.norm.bias, stages.1.1.pwconv1.weight, stages.1.1.pwconv1.bias, stages.1.1.pwconv2.weight, stages.1.1.pwconv2.bias, stages.1.2.gamma, stages.1.2.dwconv.weight, stages.1.2.dwconv.bias, stages.1.2.norm.weight, stages.1.2.norm.bias, stages.1.2.pwconv1.weight, stages.1.2.pwconv1.bias, stages.1.2.pwconv2.weight, stages.1.2.pwconv2.bias, stages.2.0.gamma, stages.2.0.dwconv.weight, stages.2.0.dwconv.bias, stages.2.0.norm.weight, stages.2.0.norm.bias, stages.2.0.pwconv1.weight, stages.2.0.pwconv1.bias, stages.2.0.pwconv2.weight, stages.2.0.pwconv2.bias, stages.2.1.gamma, stages.2.1.dwconv.weight, stages.2.1.dwconv.bias, stages.2.1.norm.weight, stages.2.1.norm.bias, stages.2.1.pwconv1.weight, stages.2.1.pwconv1.bias, stages.2.1.pwconv2.weight, stages.2.1.pwconv2.bias, stages.2.2.gamma, stages.2.2.dwconv.weight, stages.2.2.dwconv.bias, stages.2.2.norm.weight, stages.2.2.norm.bias, stages.2.2.pwconv1.weight, stages.2.2.pwconv1.bias, stages.2.2.pwconv2.weight, stages.2.2.pwconv2.bias, stages.2.3.gamma, stages.2.3.dwconv.weight, stages.2.3.dwconv.bias, stages.2.3.norm.weight, stages.2.3.norm.bias, stages.2.3.pwconv1.weight, stages.2.3.pwconv1.bias, stages.2.3.pwconv2.weight, stages.2.3.pwconv2.bias, stages.2.4.gamma, stages.2.4.dwconv.weight, stages.2.4.dwconv.bias, stages.2.4.norm.weight, stages.2.4.norm.bias, stages.2.4.pwconv1.weight, stages.2.4.pwconv1.bias, stages.2.4.pwconv2.weight, stages.2.4.pwconv2.bias, stages.2.5.gamma, stages.2.5.dwconv.weight, stages.2.5.dwconv.bias, stages.2.5.norm.weight, stages.2.5.norm.bias, stages.2.5.pwconv1.weight, stages.2.5.pwconv1.bias, stages.2.5.pwconv2.weight, stages.2.5.pwconv2.bias, stages.2.6.gamma, stages.2.6.dwconv.weight, stages.2.6.dwconv.bias, stages.2.6.norm.weight, stages.2.6.norm.bias, stages.2.6.pwconv1.weight, stages.2.6.pwconv1.bias, stages.2.6.pwconv2.weight, stages.2.6.pwconv2.bias, stages.2.7.gamma, stages.2.7.dwconv.weight, stages.2.7.dwconv.bias, stages.2.7.norm.weight, stages.2.7.norm.bias, stages.2.7.pwconv1.weight, stages.2.7.pwconv1.bias, stages.2.7.pwconv2.weight, stages.2.7.pwconv2.bias, stages.2.8.gamma, stages.2.8.dwconv.weight, stages.2.8.dwconv.bias, stages.2.8.norm.weight, stages.2.8.norm.bias, stages.2.8.pwconv1.weight, stages.2.8.pwconv1.bias, stages.2.8.pwconv2.weight, stages.2.8.pwconv2.bias, stages.2.9.gamma, stages.2.9.dwconv.weight, stages.2.9.dwconv.bias, stages.2.9.norm.weight, stages.2.9.norm.bias, stages.2.9.pwconv1.weight, stages.2.9.pwconv1.bias, stages.2.9.pwconv2.weight, stages.2.9.pwconv2.bias, stages.2.10.gamma, stages.2.10.dwconv.weight, stages.2.10.dwconv.bias, stages.2.10.norm.weight, stages.2.10.norm.bias, stages.2.10.pwconv1.weight, stages.2.10.pwconv1.bias, stages.2.10.pwconv2.weight, stages.2.10.pwconv2.bias, stages.2.11.gamma, stages.2.11.dwconv.weight, stages.2.11.dwconv.bias, stages.2.11.norm.weight, stages.2.11.norm.bias, stages.2.11.pwconv1.weight, stages.2.11.pwconv1.bias, stages.2.11.pwconv2.weight, stages.2.11.pwconv2.bias, stages.2.12.gamma, stages.2.12.dwconv.weight, stages.2.12.dwconv.bias, stages.2.12.norm.weight, stages.2.12.norm.bias, stages.2.12.pwconv1.weight, stages.2.12.pwconv1.bias, stages.2.12.pwconv2.weight, stages.2.12.pwconv2.bias, stages.2.13.gamma, stages.2.13.dwconv.weight, stages.2.13.dwconv.bias, stages.2.13.norm.weight, stages.2.13.norm.bias, stages.2.13.pwconv1.weight, stages.2.13.pwconv1.bias, stages.2.13.pwconv2.weight, stages.2.13.pwconv2.bias, stages.2.14.gamma, stages.2.14.dwconv.weight, stages.2.14.dwconv.bias, stages.2.14.norm.weight, stages.2.14.norm.bias, stages.2.14.pwconv1.weight, stages.2.14.pwconv1.bias, stages.2.14.pwconv2.weight, stages.2.14.pwconv2.bias, stages.2.15.gamma, stages.2.15.dwconv.weight, stages.2.15.dwconv.bias, stages.2.15.norm.weight, stages.2.15.norm.bias, stages.2.15.pwconv1.weight, stages.2.15.pwconv1.bias, stages.2.15.pwconv2.weight, stages.2.15.pwconv2.bias, stages.2.16.gamma, stages.2.16.dwconv.weight, stages.2.16.dwconv.bias, stages.2.16.norm.weight, stages.2.16.norm.bias, stages.2.16.pwconv1.weight, stages.2.16.pwconv1.bias, stages.2.16.pwconv2.weight, stages.2.16.pwconv2.bias, stages.2.17.gamma, stages.2.17.dwconv.weight, stages.2.17.dwconv.bias, stages.2.17.norm.weight, stages.2.17.norm.bias, stages.2.17.pwconv1.weight, stages.2.17.pwconv1.bias, stages.2.17.pwconv2.weight, stages.2.17.pwconv2.bias, stages.2.18.gamma, stages.2.18.dwconv.weight, stages.2.18.dwconv.bias, stages.2.18.norm.weight, stages.2.18.norm.bias, stages.2.18.pwconv1.weight, stages.2.18.pwconv1.bias, stages.2.18.pwconv2.weight, stages.2.18.pwconv2.bias, stages.2.19.gamma, stages.2.19.dwconv.weight, stages.2.19.dwconv.bias, stages.2.19.norm.weight, stages.2.19.norm.bias, stages.2.19.pwconv1.weight, stages.2.19.pwconv1.bias, stages.2.19.pwconv2.weight, stages.2.19.pwconv2.bias, stages.2.20.gamma, stages.2.20.dwconv.weight, stages.2.20.dwconv.bias, stages.2.20.norm.weight, stages.2.20.norm.bias, stages.2.20.pwconv1.weight, stages.2.20.pwconv1.bias, stages.2.20.pwconv2.weight, stages.2.20.pwconv2.bias, stages.2.21.gamma, stages.2.21.dwconv.weight, stages.2.21.dwconv.bias, stages.2.21.norm.weight, stages.2.21.norm.bias, stages.2.21.pwconv1.weight, stages.2.21.pwconv1.bias, stages.2.21.pwconv2.weight, stages.2.21.pwconv2.bias, stages.2.22.gamma, stages.2.22.dwconv.weight, stages.2.22.dwconv.bias, stages.2.22.norm.weight, stages.2.22.norm.bias, stages.2.22.pwconv1.weight, stages.2.22.pwconv1.bias, stages.2.22.pwconv2.weight, stages.2.22.pwconv2.bias, stages.2.23.gamma, stages.2.23.dwconv.weight, stages.2.23.dwconv.bias, stages.2.23.norm.weight, stages.2.23.norm.bias, stages.2.23.pwconv1.weight, stages.2.23.pwconv1.bias, stages.2.23.pwconv2.weight, stages.2.23.pwconv2.bias, stages.2.24.gamma, stages.2.24.dwconv.weight, stages.2.24.dwconv.bias, stages.2.24.norm.weight, stages.2.24.norm.bias, stages.2.24.pwconv1.weight, stages.2.24.pwconv1.bias, stages.2.24.pwconv2.weight, stages.2.24.pwconv2.bias, stages.2.25.gamma, stages.2.25.dwconv.weight, stages.2.25.dwconv.bias, stages.2.25.norm.weight, stages.2.25.norm.bias, stages.2.25.pwconv1.weight, stages.2.25.pwconv1.bias, stages.2.25.pwconv2.weight, stages.2.25.pwconv2.bias, stages.2.26.gamma, stages.2.26.dwconv.weight, stages.2.26.dwconv.bias, stages.2.26.norm.weight, stages.2.26.norm.bias, stages.2.26.pwconv1.weight, stages.2.26.pwconv1.bias, stages.2.26.pwconv2.weight, stages.2.26.pwconv2.bias, stages.3.0.gamma, stages.3.0.dwconv.weight, stages.3.0.dwconv.bias, stages.3.0.norm.weight, stages.3.0.norm.bias, stages.3.0.pwconv1.weight, stages.3.0.pwconv1.bias, stages.3.0.pwconv2.weight, stages.3.0.pwconv2.bias, stages.3.1.gamma, stages.3.1.dwconv.weight, stages.3.1.dwconv.bias, stages.3.1.norm.weight, stages.3.1.norm.bias, stages.3.1.pwconv1.weight, stages.3.1.pwconv1.bias, stages.3.1.pwconv2.weight, stages.3.1.pwconv2.bias, stages.3.2.gamma, stages.3.2.dwconv.weight, stages.3.2.dwconv.bias, stages.3.2.norm.weight, stages.3.2.norm.bias, stages.3.2.pwconv1.weight, stages.3.2.pwconv1.bias, stages.3.2.pwconv2.weight, stages.3.2.pwconv2.bias, norm0.weight, norm0.bias, norm1.weight, norm1.bias, norm2.weight, norm2.bias, norm3.weight, norm3.bias
Thank you !!
Anshu