Hi,
Thanks for your great work! I try to train the model myself recently, but I found that it takes so long to transfer the model from cpu to gpu (about an hour) and then it failed. Could you pls give me any suggestions? Did I do something wrong?
Thanks in advance!
My environment is below:
sys.platform linux
Python 3.7.0 (default, Oct 9 2018, 10:31:47) [GCC 7.3.0]
numpy 1.21.5
detectron2 0.6 @/home/mu/anaconda3/envs/maskformer/lib/python3.7/site-packages/detectron2
Compiler GCC 7.3
CUDA compiler CUDA 10.2
detectron2 arch flags 3.7, 5.0, 5.2, 6.0, 6.1, 7.0, 7.5
DETECTRON2_ENV_MODULE
PyTorch 1.8.2 @/home/mu/anaconda3/envs/maskformer/lib/python3.7/site-packages/torch
PyTorch debug build False
GPU available Yes
GPU 0 NVIDIA GeForce RTX 3080 Laptop GPU (arch=8.6)
Driver version 510.60.02
CUDA_HOME /usr/local/cuda
Pillow 9.2.0
torchvision 0.9.2 @/home/mu/anaconda3/envs/maskformer/lib/python3.7/site-packages/torchvision
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5
fvcore 0.1.5.post20220512
iopath 0.1.9
cv2 4.6.0
The error is below:
res4.9.conv3.norm.num_batches_tracked
res5.0.conv1.norm.num_batches_tracked
res5.0.conv2.norm.num_batches_tracked
res5.0.conv3.norm.num_batches_tracked
res5.0.shortcut.norm.num_batches_tracked
res5.1.conv1.norm.num_batches_tracked
res5.1.conv2.norm.num_batches_tracked
res5.1.conv3.norm.num_batches_tracked
res5.2.conv1.norm.num_batches_tracked
res5.2.conv2.norm.num_batches_tracked
res5.2.conv3.norm.num_batches_tracked
stem.conv1.norm.num_batches_tracked
stem.conv2.norm.num_batches_tracked
stem.conv3.norm.num_batches_tracked
stem.fc.{bias, weight}
[08/21 20:18:39 d2.engine.train_loop]: Starting training from iteration 0
ERROR [08/21 20:20:24 d2.engine.train_loop]: Exception during training:
Traceback (most recent call last):
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/train_loop.py", line 149, in train
self.run_step()
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/defaults.py", line 494, in run_step
self._trainer.run_step()
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/train_loop.py", line 285, in run_step
losses.backward()
File "/cloud/maskformer/lib/python3.7/site-packages/torch/tensor.py", line 245, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/cloud/maskformer/lib/python3.7/site-packages/torch/autograd/init.py", line 147, in backward
allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
RuntimeError: Unable to find a valid cuDNN algorithm to run convolution
[08/21 20:20:24 d2.engine.hooks]: Total training time: 0:01:45 (0:00:00 on hooks)
[08/21 20:20:24 d2.utils.events]: iter: 0 lr: N/A max_mem: 5604M
Traceback (most recent call last):
File "train_net.py", line 270, in
args=(args,),
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/launch.py", line 82, in launch
main_func(*args)
File "train_net.py", line 258, in main
return trainer.train()
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/defaults.py", line 484, in train
super().train(self.start_iter, self.max_iter)
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/train_loop.py", line 149, in train
self.run_step()
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/defaults.py", line 494, in run_step
self._trainer.run_step()
File "/cloud/maskformer/lib/python3.7/site-packages/detectron2/engine/train_loop.py", line 285, in run_step
losses.backward()
File "/cloud/maskformer/lib/python3.7/site-packages/torch/tensor.py", line 245, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/cloud/maskformer/lib/python3.7/site-packages/torch/autograd/init.py", line 147, in backward
allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
RuntimeError: Unable to find a valid cuDNN algorithm to run convolution