On the adaptation of recurrent neural networks for system identification

Overview

On the adaptation of recurrent neural networks for system identification

This repository contains the Python code to reproduce the results of the paper On the adaptation of recurrent neural networks for system identification by Marco Forgione, Aneri Muni, Dario Piga, and Marco Gallieri.

We introduce a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network models.

A nominal RNN model is first identified using available measurements. The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system.

To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime. The correction term is learned through a Bayesian Linear Regression (BLR) method defined in terms of the features spanned by the nominal model's Jacobian with respect to its parameters.

RNN_adaptation

A non-parametric view of the approach is also proposed, which extends the recent work on Gaussian Process with Neural Tangent Kernel (NTK-GP) discussed in [1] to the RNN case (RNTK-GP).

Finally, we introduce an approach to initialize the RNN state based on a context of past data, so that an estimate of the initial state is not needed on top of the parameter estimation.

RNN_initialization

Folders:

Software requirements:

Simulations were performed on a Python 3.8 conda environment with

  • numpy
  • matplotlib
  • pandas
  • pytorch (version 1.8.1)

These dependencies may be installed through the commands:

conda install numpy scipy pandas matplotlib
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

Citing

If you find this project useful, we encourage you to

  • Star this repository
  • Cite the paper

To cite the paper, you may use the following BibTex entry:

@article{forgione2022adapt,
  title={On the adaptation of recurrent neural networks for system identification},
  author={Forgione, M. and Muni, A. and Piga, D. and Gallieri, M.},
  journal={arXiv e-prints arXiv:2201.08660},
  year={2022}
}

Using the IEEEtran bibliography style, it should look like:

M. Forgione, A. Muni, D. Piga, and M. Gallieri, "On the adaptation of recurrent neural networks for system identification," arXiv preprint arXiv:2201.08660, 2022.

Bibliography

[1] W. Maddox, S. Tang, P. Moreno, A. Wilson, and A. Damianou, "Fast Adaptation with Linearized Neural Networks,"
in Proc. of the International Conference on Artificial Intelligence and Statistics, 2021.

You might also like...
Differentiable architecture search for convolutional and recurrent networks
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Pytorch implementation of the Variational Recurrent Neural Network (VRNN).
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Pytorch implementation of
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

A real world application of a Recurrent Neural Network on a binary classification of time series data
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

Owner
Marco Forgione
Researcher in Automatic Control and Machine Learning at the Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
Marco Forgione
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 3, 2023
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

null 105 Dec 18, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

null 20 Dec 30, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 8, 2022