Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Overview

Federated Distance (FedDist)

This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison" and the code of federated learning experiments by Sannara Ek during his master thesis.

Overview


This experiments compares 3 federated learning algorithms along with a new one, FedDist. The FedDist algorithm incorporates a pair-wise distance scheme for identifying outlier-like neurons/filters. These outlier-like neurons/filter may be in fact features learned from sparse data and so it is directly added to the server model for the next round of training.

Core Dependencies (tested and stable)


  • Tensorflow 2.2.2
  • PyTorch 1.1
  • scikit-learn 0.22.1

All the working scripts are presented in a Jupiter notebook file format.

There is an array of 3rd party packages that is necessary for the entirety of the scripts to run. It is recommended to run command "pip3 install -r requirements.txt" in your virtual environment and working directory to replicate the environments used in this experiment.

!Note! Visual Studio is required to solve dependency problems when working on a Windows Machine

Data Preparation


"DATA_UCI.ipynb" and "DATA_REALWORLD_SPLITSUB.ipynb" are respectively used to prepare the UCI and REALWORLD dataset for training. Simply run all cells in a Jupyter notebook. The formatted dataset will be placed in a new directory "datasetStand"

FL script implementations


The FedAvg and FedPer implementations are found in the file "FedAvg_FedPer.ipynb". You must specify which algorithm you which to run in the third cell of the notebook by changing the "algorithm" variable to either "FEDAVG" or "FEDPER"

FedDist is found in the "FedDist.ipynb" file.

FedMA is found in the "FedMA.ipynb" file.

For all the federated algorithms, the third cell gives a variety of options and testing environment to choose from. We recommend leaving the configuration in default other than changing the "algorithm" variable and specifying the GPU/CPU to use. Simply run all cells to start training.

If preferred to run as a python script, convert the files to a .py format VIA Jupiter notebook (FILES -> Download as -> Python (.py)).

Additionally with the command below from a console achieves the same result:

jupyter nbconvert --to script '[ScriptName].ipynb'

Simply specify the wanted parameters in the third cell beforehand.

Results Interpretability


All results of each experiments shall generate the "savedModels" folder. Within this folder will contain subfolders with the name of the chosen configuration and model architecture of the experiment. Additionally, within each model architecture folder will contain the another subfolder with the name of the dataset used for the experiment. E.g a directory should appear like:

./savedModels/FED_5C_10LE_50CR_400D_100D_BALANCED/UCI

Now within this folder:

The final server model is saved in a .h5 format. The recorded training statistics foreach communication round, such as the accuracy and loss of the clients model and server model, are stored in the trainingStats folder. The results regarding the Global accuracy and the detail of the server model can be found on the generated Server-Measure.csv file. Results for the Personalization accuracy can be found in the indivualClients Measure.csv file and finally the Generalization accuracy can be found at the AllClientsMeasure.csv file.

Sample script sequence:


An example of execution would be to first download and format the dataset (UCI and REALWORLD) then execute one of the FL algorithms (requires several days on CPU).

1.DATA_UCI.ipynb
2.DATA_REALWORLD_SPLITSUB.ipynb
3.FedAvg_FedPer.ipynb/FedDist.ipynb/FedMA.ipynb

Citing this work:


@INPROCEEDINGS{Lala2103:Federated,
AUTHOR="Sannara Ek and François Portet and Philippe Lalanda and German Vega",
TITLE="A Federated Learning Aggregation Algorithm for Pervasive Computing:
Evaluation and Comparison",
BOOKTITLE="2021 IEEE International Conference on Pervasive Computing and
Communications (PerCom) (PerCom 2021)",
ADDRESS="Kassel, Germany",
DAYS=21,
MONTH=mar,
YEAR=2021,
KEYWORDS="Federated Learning; Edge Computing; Human activity recognition"
}

Contact:


Please contact the authors by [firstname].[lastname]@univ-grenoble-alpes.fr if you have issues with the code.

To contact Sannara Ek, Please use [firstname].[lastname]@gmail.com

You might also like...
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Implementation of CVPR 2021 paper
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

codes for
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

Multiple paper open-source codes of the Microsoft Research Asia DKI group
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Codes of paper
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

Owner
GETALP
Study Group for Machine Translation and Automated Processing of Languages and Speech
GETALP
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

null 15 Aug 30, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 2, 2021
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

null 74 Dec 30, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 2, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 1, 2023