Hi,
I reproduced all your steps and got the following output from the console:
`------------ Options -------------
batchSize: 1
data_type: 32
dataroot: dataset/
display_winsize: 512
fineSize: 512
gen_checkpoint: checkpoints/PFAFN/gen_model_final.pth
gpu_ids: [0]
input_nc: 3
isTrain: False
loadSize: 512
max_dataset_size: inf
nThreads: 1
name: demo
no_flip: False
norm: instance
output_nc: 3
phase: test
resize_or_crop: None
serial_batches: False
tf_log: False
use_dropout: False
verbose: False
warp_checkpoint: checkpoints/PFAFN/warp_model_final.pth
-------------- End ----------------
CustomDatasetDataLoader
dataset [AlignedDataset] was created
6
AFWM(
(image_features): FeatureEncoder(
(encoders): ModuleList(
(0): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(1): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(2): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(3): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(4): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
)
)
(cond_features): FeatureEncoder(
(encoders): ModuleList(
(0): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(1): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(2): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(3): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(4): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
)
)
(image_FPN): RefinePyramid(
(adaptive): ModuleList(
(0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(4): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
)
(smooth): ModuleList(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(cond_FPN): RefinePyramid(
(adaptive): ModuleList(
(0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(4): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
)
(smooth): ModuleList(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(aflow_net): AFlowNet(
(netMain): ModuleList(
(0): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(4): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(netRefine): ModuleList(
(0): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(4): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
)
ResUnetGenerator(
(model): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(7, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): ReLU(inplace)
(2): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): ReLU(inplace)
(2): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): Upsample(scale_factor=2.0, mode=nearest)
(5): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(6): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): ReLU(inplace)
(8): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(9): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(6): Upsample(scale_factor=2.0, mode=nearest)
(7): Conv2d(1024, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU(inplace)
(10): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(11): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(6): Upsample(scale_factor=2.0, mode=nearest)
(7): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU(inplace)
(10): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(11): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(6): Upsample(scale_factor=2.0, mode=nearest)
(7): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU(inplace)
(10): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(11): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(5): Upsample(scale_factor=2.0, mode=nearest)
(6): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)------------ Options -------------
batchSize: 1
data_type: 32
dataroot: dataset/
display_winsize: 512
fineSize: 512
gen_checkpoint: checkpoints/PFAFN/gen_model_final.pth
gpu_ids: [0]
input_nc: 3
isTrain: False
loadSize: 512
max_dataset_size: inf
nThreads: 1
name: demo
no_flip: False
norm: instance
output_nc: 3
phase: test
resize_or_crop: None
serial_batches: False
tf_log: False
use_dropout: False
verbose: False
warp_checkpoint: checkpoints/PFAFN/warp_model_final.pth
-------------- End ----------------
CustomDatasetDataLoader
dataset [AlignedDataset] was created
6
AFWM(
(image_features): FeatureEncoder(
(encoders): ModuleList(
(0): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(1): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(2): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(3): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(4): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
)
)
(cond_features): FeatureEncoder(
(encoders): ModuleList(
(0): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(1): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(2): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(3): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
(4): Sequential(
(0): DownSample(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
)
(1): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(2): ResBlock(
(block): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU(inplace)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): ReLU(inplace)
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
)
)
(image_FPN): RefinePyramid(
(adaptive): ModuleList(
(0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(4): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
)
(smooth): ModuleList(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(cond_FPN): RefinePyramid(
(adaptive): ModuleList(
(0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(4): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
)
(smooth): ModuleList(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(aflow_net): AFlowNet(
(netMain): ModuleList(
(0): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(4): Sequential(
(0): Conv2d(49, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(netRefine): ModuleList(
(0): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(4): Sequential(
(0): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.1)
(2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): LeakyReLU(negative_slope=0.1)
(4): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): LeakyReLU(negative_slope=0.1)
(6): Conv2d(32, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
)
ResUnetGenerator(
(model): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(7, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): ReLU(inplace)
(2): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): ResUnetSkipConnectionBlock(
(model): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): ReLU(inplace)
(2): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): Upsample(scale_factor=2.0, mode=nearest)
(5): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(6): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): ReLU(inplace)
(8): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(9): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(6): Upsample(scale_factor=2.0, mode=nearest)
(7): Conv2d(1024, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU(inplace)
(10): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(11): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(6): Upsample(scale_factor=2.0, mode=nearest)
(7): Conv2d(512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU(inplace)
(10): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(11): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(6): Upsample(scale_factor=2.0, mode=nearest)
(7): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU(inplace)
(10): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(11): ResidualBlock(
(relu): ReLU(inplace)
(block): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(5): Upsample(scale_factor=2.0, mode=nearest)
(6): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
)
Traceback (most recent call last):
File "", line 1, in
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\spawn.py", line 105, in spawn_main
exitcode = _main(fd)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\spawn.py", line 114, in _main
prepare(preparation_data)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\spawn.py", line 225, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
run_name="mp_main")
File "D:\ANACONDA\envs\tryon\lib\runpy.py", line 263, in run_path
pkg_name=pkg_name, script_name=fname)
File "D:\ANACONDA\envs\tryon\lib\runpy.py", line 96, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File "D:\ANACONDA\envs\tryon\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\JONY-\PF-AFN\PF-AFN_test\test.py", line 40, in
for i, data in enumerate(dataset, start=epoch_iter):
File "D:\ANACONDA\envs\tryon\lib\site-packages\torch\utils\data\dataloader.py", line 193, in iter
return _DataLoaderIter(self)
File "D:\ANACONDA\envs\tryon\lib\site-packages\torch\utils\data\dataloader.py", line 469, in init
w.start()
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\popen_spawn_win32.py", line 33, in init
prep_data = spawn.get_preparation_data(process_obj._name)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\spawn.py", line 143, in get_preparation_data
_check_not_importing_main()
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\spawn.py", line 136, in _check_not_importing_main
is not going to be frozen to produce an executable.''')
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
Traceback (most recent call last):
File "D:\ANACONDA\envs\tryon\lib\site-packages\torch\utils\data\dataloader.py", line 511, in _try_get_batch
data = self.data_queue.get(timeout=timeout)
File "D:\ANACONDA\envs\tryon\lib\multiprocessing\queues.py", line 105, in get
raise Empty
queue.Empty
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "test.py", line 40, in
for i, data in enumerate(dataset, start=epoch_iter):
File "D:\ANACONDA\envs\tryon\lib\site-packages\torch\utils\data\dataloader.py", line 576, in next
idx, batch = self._get_batch()
File "D:\ANACONDA\envs\tryon\lib\site-packages\torch\utils\data\dataloader.py", line 553, in _get_batch
success, data = self._try_get_batch()
File "D:\ANACONDA\envs\tryon\lib\site-packages\torch\utils\data\dataloader.py", line 519, in _try_get_batch
raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str))
RuntimeError: DataLoader worker (pid(s) 3220) exited unexpectedly`
If you could offer a solution, It'll be really helpful. I'm trying to reproduce your results against CP-VTON+ and so far I have not been able.