Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

Related tags

Deep Learning FROM
Overview

End2End Occluded Face Recognition by Masking Corrupted Features

This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recognition by Masking Corrupted Features.
Haibo Qiu, Dihong Gong, Zhifeng Li, Wei Liu and Dacheng Tao

Requirements

Main packages:

  • python=3.6.7
  • pytorch=1.8.1
  • torchvision=0.9.1
  • cudatoolkit=10.2.89
  • lmdb=1.2.0
  • pyarrow=0.17.0

Or directly create a conda env with

conda env create -f environment.yml

Data preparation

  1. Training data (data/datasets) and pretrained models (pretrained/) can be found here.

  2. Please refer to data/generate_lmdb.py for the lmdb file generation of training data.

  3. Please refer to data/generate_occ_lfw.py for the occluded testing images generation.

Training

Simply run the following script:

bash start.sh

Testing

  1. To reproduce the results in our paper, please download the pretrained models and put them in pretrained/, then run:
bash eval.sh
  1. For megaface testing, the related commonds are included in eval.sh. Current lib/core/megaface_mp.py generates npy file for each sample, which can be evaluated with FaceX-Zoo. Or you can switch the generated function in lib/core/megaface_mp.py to produce bin file and use official devkit for evaluation.

  2. The AR Face dataset evaluation scripts are also included in eval.sh

Acknowledgement

The code is partially developed from PDSN. The occluders images are also from PDSN.

Citation

If you use our code or models in your research, please cite with:

@article{qiu2021end2end,
  title={End2End occluded face recognition by masking corrupted features},
  author={Qiu, Haibo and Gong, Dihong and Li, Zhifeng and Liu, Wei and Tao, Dacheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}
You might also like...
This is the official PyTorch implementation of the paper
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

StyleGAN2-ADA - Official PyTorch implementation
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Official PyTorch implementation of
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

Official PyTorch implementation of RobustNet (CVPR 2021 Oral)
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

[PyTorch] Official implementation of CVPR2021 paper
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Comments
  • training process

    training process

    Hello, i got questions for the training process.

    1. i just want to confirm that the provided baseline model is from the first training stated in the paper, right?
    2. can we run start.sh for the second training to reproduce results in the paper?

    thanks in advance.

    opened by jiejie22997 7
  • Megaface datasets

    Megaface datasets

    Hello,

    Thanks for sharing the codes. I want to test on Megaface datasets. How I can access to this datasets? In the official website announcement, Megaface data are no longer being distributed. Thanks!

    opened by Carinazhao22 6
  • How many images are there in one training epoch?

    How many images are there in one training epoch?

    Your paper says that 'Mix-WebFace is the mixup of Occ-WebFace and WebFace with the ratio 2:1'. How many images in the Occ-WebFace? How many images in one training epoch after mixing up Occ-WebFace and WebFace?

    opened by ygtxr1997 2
Owner
Haibo Qiu
Haibo Qiu
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes.

NVIDIA Research Projects 3.2k Dec 30, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

null 364 Dec 14, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

null 217 Jan 3, 2023