A curated list of neural network pruning resources.

Overview

Awesome Pruning Awesome

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Please feel free to pull requests or open an issue to add papers.

Table of Contents

Type of Pruning

Type F W Other
Explanation Filter pruning Weight pruning other types

2020

Title Venue Type Code
HYDRA: Pruning Adversarially Robust Neural Networks NeurIPS W PyTorch(Author)
Logarithmic Pruning is All You Need NeurIPS W -
Directional Pruning of Deep Neural Networks NeurIPS W -
Movement Pruning: Adaptive Sparsity by Fine-Tuning NeurIPS W PyTorch(Author)
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot NeurIPS W PyTorch(Author)
Neuron Merging: Compensating for Pruned Neurons NeurIPS F PyTorch(Author)
Neuron-level Structured Pruning using Polarization Regularizer NeurIPS F PyTorch(Author)
SCOP: Scientific Control for Reliable Neural Network Pruning NeurIPS F -
Storage Efficient and Dynamic Flexible Runtime Channel Pruning via Deep Reinforcement Learning NeurIPS F -
The Generalization-Stability Tradeoff In Neural Network Pruning NeurIPS F PyTorch(Author)
Pruning Filter in Filter NeurIPS Other PyTorch(Author)
Position-based Scaled Gradient for Model Quantization and Pruning NeurIPS Other PyTorch(Author)
Bayesian Bits: Unifying Quantization and Pruning NeurIPS Other -
Pruning neural networks without any data by iteratively conserving synaptic flow NeurIPS Other PyTorch(Author)
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning ECCV (Oral) F PyTorch(Author)
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation ECCV F -
DHP: Differentiable Meta Pruning via HyperNetworks ECCV F PyTorch(Author)
Meta-Learning with Network Pruning ECCV W -
Accelerating CNN Training by Pruning Activation Gradients ECCV W -
DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search ECCV Other -
Differentiable Joint Pruning and Quantization for Hardware Efficiency ECCV Other -
Channel Pruning via Automatic Structure Search IJCAI F PyTorch(Author)
Adversarial Neural Pruning with Latent Vulnerability Suppression ICML W -
Proving the Lottery Ticket Hypothesis: Pruning is All You Need ICML W -
Soft Threshold Weight Reparameterization for Learnable Sparsity ICML WF Pytorch(Author)
Network Pruning by Greedy Subnetwork Selection ICML F -
Operation-Aware Soft Channel Pruning using Differentiable Masks ICML F -
DropNet: Reducing Neural Network Complexity via Iterative Pruning ICML F -
Towards Efficient Model Compression via Learned Global Ranking CVPR (Oral) F Pytorch(Author)
HRank: Filter Pruning using High-Rank Feature Map CVPR (Oral) F Pytorch(Author)
Neural Network Pruning with Residual-Connections and Limited-Data CVPR (Oral) F -
Multi-Dimensional Pruning: A Unified Framework for Model Compression CVPR (Oral) WF -
DMCP: Differentiable Markov Channel Pruning for Neural Networks CVPR (Oral) F TensorFlow(Author)
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression CVPR F PyTorch(Author)
Few Sample Knowledge Distillation for Efficient Network Compression CVPR F -
Discrete Model Compression With Resource Constraint for Deep Neural Networks CVPR F -
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization CVPR W -
Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration CVPR F -
APQ: Joint Search for Network Architecture, Pruning and Quantization Policy CVPR F -
Comparing Rewinding and Fine-tuning in Neural Network Pruning ICLR (Oral) WF TensorFlow(Author)
A Signal Propagation Perspective for Pruning Neural Networks at Initialization ICLR (Spotlight) W -
ProxSGD: Training Structured Neural Networks under Regularization and Constraints ICLR W TF+PT(Author)
One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation ICLR W -
Lookahead: A Far-sighted Alternative of Magnitude-based Pruning ICLR W PyTorch(Author)
Dynamic Model Pruning with Feedback ICLR WF -
Provable Filter Pruning for Efficient Neural Networks ICLR F -
Data-Independent Neural Pruning via Coresets ICLR W -
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates AAAI F -
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks AAAI Other -
Pruning from Scratch AAAI Other -

2019

Title Venue Type Code
Network Pruning via Transformable Architecture Search NeurIPS F PyTorch(Author)
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks NeurIPS F PyTorch(Author)
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask NeurIPS W TensorFlow(Author)
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers NeurIPS W -
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks NeurIPS W PyTorch(Author)
AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters NeurIPS W -
Model Compression with Adversarial Robustness: A Unified Optimization Framework NeurIPS Other PyTorch(Author)
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning ICCV F PyTorch(Author)
Accelerate CNN via Recursive Bayesian Pruning ICCV F -
Adversarial Robustness vs Model Compression, or Both? ICCV W PyTorch(Author)
Learning Filter Basis for Convolutional Neural Network Compression ICCV Other -
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration CVPR (Oral) F PyTorch(Author)
Towards Optimal Structured CNN Pruning via Generative Adversarial Learning CVPR F PyTorch(Author)
Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure CVPR F PyTorch(Author)
On Implicit Filter Level Sparsity in Convolutional Neural Networks, Extension1, Extension2 CVPR F PyTorch(Author)
Structured Pruning of Neural Networks with Budget-Aware Regularization CVPR F -
Importance Estimation for Neural Network Pruning CVPR F PyTorch(Author)
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks CVPR F -
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search CVPR Other TensorFlow(Author)
Variational Convolutional Neural Network Pruning CVPR - -
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks ICLR (Best) W TensorFlow(Author)
Rethinking the Value of Network Pruning ICLR F PyTorch(Author)
Dynamic Channel Pruning: Feature Boosting and Suppression ICLR F TensorFlow(Author)
SNIP: Single-shot Network Pruning based on Connection Sensitivity ICLR W TensorFLow(Author)
Dynamic Sparse Graph for Efficient Deep Learning ICLR F CUDA(3rd)
Collaborative Channel Pruning for Deep Networks ICML F -
Approximated Oracle Filter Pruning for Destructive CNN Width Optimization github ICML F -
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis4 ICML W PyTorch(Author)
COP: Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning IJCAI F Tensorflow(Author)

2018

Title Venue Type Code
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers ICLR F TensorFlow(Author), PyTorch(3rd)
To prune, or not to prune: exploring the efficacy of pruning for model compression ICLR W -
Discrimination-aware Channel Pruning for Deep Neural Networks NeurIPS F TensorFlow(Author)
Frequency-Domain Dynamic Pruning for Convolutional Neural Networks NeurIPS W -
Learning Sparse Neural Networks via Sensitivity-Driven Regularization NeurIPS WF -
Amc: Automl for model compression and acceleration on mobile devices ECCV F TensorFlow(3rd)
Data-Driven Sparse Structure Selection for Deep Neural Networks ECCV F MXNet(Author)
Coreset-Based Neural Network Compression ECCV F PyTorch(Author)
Constraint-Aware Deep Neural Network Compression ECCV W SkimCaffe(Author)
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers ECCV W Caffe(Author)
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning CVPR F PyTorch(Author)
NISP: Pruning Networks using Neuron Importance Score Propagation CVPR F -
CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization CVPR W -
“Learning-Compression” Algorithms for Neural Net Pruning CVPR W -
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks IJCAI F PyTorch(Author)
Accelerating Convolutional Networks via Global & Dynamic Filter Pruning IJCAI F -

2017

Title Venue Type Code
Pruning Filters for Efficient ConvNets ICLR F PyTorch(3rd)
Pruning Convolutional Neural Networks for Resource Efficient Inference ICLR F TensorFlow(3rd)
Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee NeurIPS W TensorFlow(Author)
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon NeurIPS W PyTorch(Author)
Runtime Neural Pruning NeurIPS F -
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning CVPR F -
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression ICCV F Caffe(Author), PyTorch(3rd)
Channel pruning for accelerating very deep neural networks ICCV F Caffe(Author)
Learning Efficient Convolutional Networks Through Network Slimming ICCV F PyTorch(Author)

2016

Title Venue Type Code
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding ICLR (Best) W Caffe(Author)
Dynamic Network Surgery for Efficient DNNs NeurIPS W Caffe(Author)

2015

Title Venue Type Code
Learning both Weights and Connections for Efficient Neural Networks NeurIPS W PyTorch(3rd)

Related Repo

Awesome-model-compression-and-acceleration

EfficientDNNs

Embedded-Neural-Network

awesome-AutoML-and-Lightweight-Models

Model-Compression-Papers

knowledge-distillation-papers

Network-Speed-and-Compression

Comments
  • pruning weights by L1 regularization

    pruning weights by L1 regularization

    Hi,

    I would like to bring to your attention our paper on weight pruning accepted by ICLR 2020.

    paper url: https://openreview.net/forum?id=HygpthEtvr code url: https://github.com/optyang/proxsgd

    Thank you for considering to include it into the database!

    Best,

    Yang

    opened by optyang 3
  • Only Train Once: A One-Shot Neural Network Training And Pruning Framework

    Only Train Once: A One-Shot Neural Network Training And Pruning Framework

    Conf: NeurIPS 2021 Paper: Only Train Once: A One-Shot Neural Network Training And Pruning Framework Code: https://github.com/tianyic/only_train_once Type: 'F'

    opened by tianyic 2
  • CHIP: CHannel Independence-based Pruning for Compact Neural Networks

    CHIP: CHannel Independence-based Pruning for Compact Neural Networks

    Conf: NeurIPS 2021 Paper: CHIP: CHannel Independence-based Pruning for Compact Neural Networks Code: https://github.com/Eclipsess/CHIP_NeurIPS2021 Type: 'F'

    opened by Eclipsess 1
  • A new pruning paper in ICML2021

    A new pruning paper in ICML2021

    opened by cheerss 1
  • The code of SCOP (NeurIPS 2020) has been released.

    The code of SCOP (NeurIPS 2020) has been released.

    Hi Yang,

    Thanks for the awesome paper list for network pruning! Here are our papers and codes about pruning.

    The code of NeurIPS 2020 paper 'SCOP: Scientific Control for Reliable Neural Network Pruning' has been released and the link is
    https://github.com/huawei-noah/Pruning/tree/master/SCOP_NeurIPS2020. The code is written with Pytorch.

    What's more, another paper on AAAI 2020, Reborn filters: Pruning convolutional neural networks with limited data, proposes a filter pruning method to reduce the computation cost. The paper link is https://ojs.aaai.org/index.php/AAAI/article/view/6058

    Thanks!

    opened by yehuitang 1
  • Add paper - ECCV 2020 Oral EagleEye

    Add paper - ECCV 2020 Oral EagleEye

    Hi,

    I would like to introduce our simple and fast filter pruning work accepted by ECCV 2020 Oral.

    paper url: https://arxiv.org/abs/2007.02491 code url: https://github.com/anonymous47823493/EagleEye

    Best,

    Bailin Li

    opened by bezorro 1
  • add new paper

    add new paper

    Hello, please kindly introduce our one new paper:

    Channel Pruning via Automatic Structure Search (IJCAI'2020). Link: https://arxiv.org/abs/2001.08565 Code: https://github.com/lmbxmu/ABCPruner

    Besides, our previous work, i.e., HRank: Filter Pruning using High-Rank Feature Map (CVPR'2020), has been accepted as Oral Paper.

    Thanks.

    opened by lmbxmu 1
  • Add code and workshop links for implicit filter level sparsity

    Add code and workshop links for implicit filter level sparsity

    Hi Yang Thanks for maintaining this list. The CVPR 2019 paper 'On Implicit Filter Level Sparsity in Convolutional Neural Networks' also has 2 workshop versions, with a few additional results. Implicit Filter Sparsification In Convolutional Neural Networks (https://arxiv.org/abs/1905.04967), ODML-CDNNR Workshop, ICML 2019 Emergence of Implicit Filter Sparsity in Convolutional Neural Networks (https://openreview.net/forum?id=rylVvNS3hE), Deep Phenomena Workshop, ICML 2019

    Also, an example of using the implicit sparsity for speedup is available in the following repository https://github.com/mehtadushy/SelecSLS-Pytorch as part of the model (https://github.com/mehtadushy/SelecSLS-Pytorch/blob/master/models/selecsls.py#L280)

    I would appreciate if you could update the list to include these!

    opened by mehtadushy 1
  • A wrong type label

    A wrong type label

    Thanks for your collection. However, "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks"(ICLR2019) is a weight-level pruning algorithm. As the paper says, it only tries unstructured pruning and the structured pruning is in its plan.

    opened by cheerss 1
  • Author code links for multiple papers added

    Author code links for multiple papers added

    Code links for two papers added:

    1. Winning the Lottery Ahead of Time: Efficient Early Network Pruning (ICML 2022).
    2. An Operator Theoretic View On Pruning Deep Neural Networks (ICLR 2022).
    opened by kiryteo 0
  • New pruning type for our ICLR22 paper: Grouped Kernel Pruning — a densely structured pruning granularity with better pruning freedom than filter/channel methods.

    New pruning type for our ICLR22 paper: Grouped Kernel Pruning — a densely structured pruning granularity with better pruning freedom than filter/channel methods.

    Greetings,

    We are the authors of the said paper/code, and we thank you for your inclusion; it has certainly generated some traffic for us.

    However, it might be worth noting that our pruning granularity is not F (filter level). Our algorithm prunes at a Grouped Kernel level, which is — to the best of our knowledge — the most fine-grained approach under the constraint of outputting a densely structured pruned network, much like channel or filter prunings.

    Since pushing the pruning freedom further while remaining structured is probably our most important contribution, we'd appreciate a simple fix (and maybe a new type category if you're feeling generous — as we'd certainly welcome more adaptations on the grouped kernel pruning framework). Thanks!

    enhancement 
    opened by choH 6
  • Sparse Networks from Scratch via Bregman Iterations

    Sparse Networks from Scratch via Bregman Iterations

    Hi,

    we have a new paper on training sparse networks from scratch via regularization and Bregman Iterations.

    Paper url: https://arxiv.org/abs/2105.04319 GitHub: https://github.com/TimRoith/BregmanLearning

    Since it is currently under review for a journal I want to ask if you even consider non-conference paper for this repository. If not please ignore this issue.

    Best,

    Tim

    opened by TimRoith 1
Owner
Yang He
Ph.D. student at UTS
Yang He
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 2, 2023
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search?? and Semantic Similarity tasks.

null 224 Jan 4, 2023
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 1, 2023
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 9, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 5, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 2, 2023
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 5, 2023
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of <Group Fisher Pruning for Practical Network Compression> based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 3, 2023
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 3, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

null 9 Oct 18, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022