The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

Overview

TensorFlow Requirement: 1.x TensorFlow 2 Not Supported

TNDM - Targeted Neural Dynamical Modeling

Note: This code is no longer being updated. The official re-implementation can be found at: https://github.com/HennigLab/tndm.

The code in this repository implements the models used in the Neurips 2021 paper, "Targeted Neural Dynamical Modeling". It also houses code from the baseline model, "Latent Factor Analysis via Dynamical Systems" (borrowed from https://github.com/lfads/models/tree/master/research/lfads). Latent dynamics models have emerged as powerful tools for modeling and interpreting neural population activity. Recently, there has been a focus on incorporating simultaneously measured behaviour into these models to further disentangle sources of neural variability in their latent space. These approaches, however, are limited in their ability to capture the underlying neural dynamics (e.g. linear) and in their ability to relate the learned dynamics back to the observed behaviour (e.g. no time lag). To this end, we introduce Targeted Neural Dynamical Modeling (TNDM), a nonlinear state-space model that jointly models the neural activity and external behavioural variables. TNDM decomposes neural dynamics into behaviourally relevant and behaviourally irrelevant dynamics; the relevant dynamics are used to reconstruct the behaviour through a flexible linear decoder and both sets of dynamics are used to reconstruct the neural activity through a linear decoder with no time lag. We implement TNDM as a sequential variational autoencoder and validate it on recordings taken from the premotor and motor cortex of a monkey performing a center-out reaching task. We show that TNDM is able to learn low-dimensional latent dynamics that are highly predictive of behaviour without sacrificing its fit to the neural data.

Prerequisites

The code is written in Python 2.7.6. The other prerequisites are:

Getting started

Before starting, run the following:

$ export PYTHONPATH=$PYTHONPATH:/path/to/your/directory/tndm_paper/

where "path/to/your/directory" is replaced with the path to the tndm_paper repository (you can get this path by using the pwd command). This allows the nested directories to access modules from their parent directory.

Train an TNDM model

For a full list of flags, their descriptions, and their default values, refer to the top of run_tndm_double.py. We trained all of our models using the run_tndm_double_paper.sh bash script which allows for modifying important values.

Finally, you can view the results in the tndm_eval_matt_data-M1.ipynb file.

You might also like...
PyTorch original implementation of Cross-lingual Language Model Pretraining.
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

An original implementation of
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

An updated version of virtual model making
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

PyTorch implementation of NeurIPS 2021 paper:
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

Owner
null
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect video data.

MUGEN 11 Oct 22, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 9, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 1, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

CE@SBU 14 Sep 10, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 7, 2023
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch >= 0.2.0 torchvision >= 0.1.8 fcn >= 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 7, 2023