[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

Overview

AGIS-Net

Introduction

This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning.

paper | supplementary material

Abstract

Automatic generation of artistic glyph images is a challenging task that attracts many research interests. Previous methods either are specifically designed for shape synthesis or focus on texture transfer. In this paper, we propose a novel model, AGIS-Net, to transfer both shape and texture styles in one-stage with only a few stylized samples. To achieve this goal, we first disentangle the representations for content and style by using two encoders, ensuring the multi-content and multi-style generation. Then we utilize two collaboratively working decoders to generate the glyph shape image and its texture image simultaneously. In addition, we introduce a local texture refinement loss to further improve the quality of the synthesized textures. In this manner, our one-stage model is much more efficient and effective than other multi-stage stacked methods. We also propose a large-scale dataset with Chinese glyph images in various shape and texture styles, rendered from 35 professional-designed artistic fonts with 7,326 characters and 2,460 synthetic artistic fonts with 639 characters, to validate the effectiveness and extendability of our method. Extensive experiments on both English and Chinese artistic glyph image datasets demonstrate the superiority of our model in generating high-quality stylized glyph images against other state-of-the-art methods.

Model Architecture

Architecture

Skip Connection Local Discriminator
skip-connection local-discriminator

Some Results

comparison

comparison

across_languae

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA cuDNN
  • Python 3
  • PyTorch 0.4.0+

Get Started

Installation

  1. Install PyTorch, torchvison and dependencies from https://pytorch.org
  2. Install python libraries visdom and dominate:
    pip install visdom
    pip install dominate
  3. Clone this repo:
    git clone -b master --single-branch https://github.com/hologerry/AGIS-Net
    cd AGIS-Net
  4. Download the offical pre-trained vgg19 model: vgg19-dcbb9e9d.pth, and put it under the models/ folder

Datasets

The datasets server is down, you can download the datasets from PKU Disk, Dropbox or MEGA. Download the datasets using the following script, four datasets and the raw average font style glyph image are available.

It may take a while, please be patient

bash ./datasets/download_dataset.sh DATASET_NAME
  • base_gray_color English synthesized gradient glyph image dataset, proposed by MC-GAN.
  • base_gray_texture English artistic glyph image dataset, proposed by MC-GAN.
  • skeleton_gray_color Chinese synthesized gradient glyph image dataset by us.
  • skeleton_gray_texture Chinese artistic glyph image dataset proposed by us.
  • average_skeleton Raw Chinese avgerage font style (skeleton) glyph image dataset proposed by us.

Please refer to the data for more details about our datasets and how to prepare your own datasets.

Model Training

  • To train a model, download the training images (e.g., English artistic glyph transfer)

    bash ./datasets/download_dataset.sh base_gray_color
    bash ./datasets/download_dataset.sh base_gray_texture
  • Train a model:

    1. Start the Visdom Visualizer

      python -m visdom.server -port PORT

      PORT is specified in train.sh

    2. Pretrain on synthesized gradient glyph image dataset

      bash ./scripts/train.sh base_gray_color GPU_ID

      GPU_ID indicates which GPU to use.

    3. Fineture on artistic glyph image dataset

      bash ./scripts/train.sh base_gray_texture GPU_ID DATA_ID FEW_SIZE

      DATA_ID indicates which artistic font is fine-tuned.
      FEW_SIZE indicates the size of few-shot set.

      It will raise an error saying:

      FileNodeFoundError: [Error 2] No such file or directory: 'chechpoints/base_gray_texture/base_gray_texture_DATA_ID_TIME/latest_net_G.pth
      

      Copy the pretrained model to above path

      cp chechpoints/base_gray_color/base_gray_color_TIME/latest_net_* chechpoints/base_gray_texture/base_gray_texture_DATA_ID_TIME/

      And start train again. It will works well.

Model Testing

  • To test a model, copy the trained model from checkpoint to pretrained_models folder (e.g., English artistic glyph transfer)

    cp chechpoints/base_gray_color/base_gray_texture_DATA_ID_TIME/latest_net_* pretrained_models/base_gray_texture_DATA_ID/
  • Test a model

    bash ./scripts/test_base_gray_texture.sh GPU_ID DATA_ID

Acknowledgements

This code is inspired by the BicycleGAN.

Special thanks to the following works for sharing their code and dataset.

Citation

If you find our work is helpful, please cite our paper:

@article{Gao2019Artistic,
  author = {Yue, Gao and Yuan, Guo and Zhouhui, Lian and Yingmin, Tang and Jianguo, Xiao},
  title = {Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning},
  journal = {ACM Trans. Graph.},
  issue_date = {November 2019},
  volume = {38},
  number = {6},
  year = {2019},
  articleno = {185},
  numpages = {12},
  url = {http://doi.acm.org/10.1145/3355089.3356574},
  publisher = {ACM}
} 

Copyright

The code and dataset are only allowed for PERSONAL and ACADEMIC usage.

You might also like...
 ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

Code for Two-stage Identifier:
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

 Few-NERD: Not Only a Few-shot NER Dataset
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

Code release for Local Light Field Fusion at SIGGRAPH 2019
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

Code release for Local Light Field Fusion at SIGGRAPH 2019
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

Official code release for
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Owner
Yue Gao
Researcher at Microsoft Research Asia
Yue Gao
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

null 150 Dec 7, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

null 33 Dec 18, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

null 30 Dec 24, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

null 42 Dec 27, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

null 71 Dec 14, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 5, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

null 40 Sep 26, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 7, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

null 220 Dec 31, 2022