PyTorch wrappers for using your model in audacity!

Overview

torchaudacity

This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for you to wrap your waveform-to-waveform and waveform-to-labels models (see the Deep Learning for Audacity website to learn more about deep learning models for audacity).

img

Table of Contents


Contributing Models to Audacity

Audacity is equipped with a wrapper framework for deep learning models written in PyTorch. Audacity contains two deep learning tools: Deep Learning Effect and Deep Learning Analyzer.
Deep Learning Effect performs waveform to waveform processing, and is useful for audio-in-audio-out tasks (such as source separation, voice conversion, style transfer, amplifier emulation, etc.), while Deep Learning Analyzer performs waveform to labels processing, and is useful for annotation tasks (such as sound event detection, musical instrument recognition, automatic speech recognition, etc.). torchaudacity contains two abstract classes for serializing two types of models: waveform-to-waveform and waveform-to-labels. The classes are WaveformToWaveform, and WaveformToLabels, respectively.

Choosing an Effect Type

Waveform to Waveform models

Waveform-to-waveform models receive a single multichannel audio track as input, and may write to a variable number of new audio tracks as output.

Example models for waveform-to-waveform effects include source separation, neural upsampling, guitar amplifier emulation, generative models, etc. Output tensors for waveform-to-waveform models must be multichannel waveform tensors with shape (num_output_channels, num_samples). For every audio waveform in the output tensor, a new audio track is created in the Audacity project.

Waveform to Labels models

Waveform-to-labels models receive a single multichannel audio track as input, and may write to an output label track as output. The waveform-to-labels effect can be used for many audio analysis applications, such as voice activity detection, sound event detection, musical instrument recognition, automatic speech recognition, etc. The output for waveform-to-labels models must be a tuple of two tensors. The first tensor corresponds to the class probabilities for each label present in the waveform, shape (num_timesteps, num_classes). The second tensor must contain timestamps with start and stop times for each label, shape (num_timesteps, 2).

Model Metadata

Certain details about the model, such as its sample rate, tool type (e.g. waveform-to-waveform or waveform-to-labels), list of labels, etc. must be provided by the model contributor in a separate metadata.json file. In order to help users choose the correct model for their required task, model contributors are asked to provide a short and long description of the model, the target domain of the model (e.g. speech, music, environmental, etc.), as well as a list of tags or keywords as part of the metadata. For waveform-to-label models, the model contributor may include an optional confidence threshold, where predictions with a probability lower than the confidence threshold are labeled as ``uncertain''.

Metadata Spec

required fields:

  • sample_rate (int)
    • range (0, 396000)
    • Model sample rate. Input tracks will be resampled to this value.
  • domains (List[str])
    • List of data domains for the model. The list should contain any of the following strings (any others will be ignored): ["music", "speech", "environmental", "other"]
  • short_description(str)
    • max 60 chars
    • short description of the model. should contain a brief message with the model's purpose, e.g. "Use me for separating vocals from the background!".
  • long_description (str)
    • max 280 chars
    • long description of the model. Shown in the detailed view of the model UI.
  • tags (List[str])
    • list of tags (to be shown in the detailed view)
    • each tag should be 15 characters max
    • max 5 tags per model.
  • labels (List[str)
    • output labels for the model. Depending on the effect type, this field means different things
    • waveform-to-waveform
      • name of each output source (e.g. drums, bass, vocal). To create the track name for each output source, each one of the labels will be appended to the mixture track's name.
    • waveform-to-labels:
      • labeler models should output a list of class probabilities with shape (n_timesteps, n_class) and a list of start/stop timestamps for each label (n_timesteps, 2). The labeler effect will create a add new labels by taking the argmax of each class probability and indexing into the metadata's labels.
  • effect_type (str)
    • Target effect for this model. Must be one of ["waveform-to-waveform", "waveform-to-labels"].
  • multichannel (bool)
    • If multichannel is set to true, stereo tracks are passed to the model as multichannel audio tensors, with shape (2, n). Note that this means that the input could either be a mono track with shape (1, n) or stereo track with shape (2, n).
    • If multichannel is set to false, stereo tracks are downmixed, meaning that the input audio tensor will always be shape (1, n).

Example - Waveform-to-Waveform model

Here's a minimal example for a model that simply boosts volume by multiplying the incoming audio by a factor of 2.

We can sum up the whole process into 4 steps:

  1. Developing your model
  2. Wrapping your model using torchaudio
  3. Creating a metadata document
  4. Exporting to HuggingFace

Developing your model

First, we create our model. There are no internal constraints on what the internal model architecture should be, as long as you can use torch.jit.script or torch.jit.trace to serialize it, and it is able to meet the input-output constraints specified in waveform-to-waveform and waveform-to-labels models.

import torch.nn as nn

class MyVolumeModel(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # do the neural net magic!
        x = x * 2

        return x

Making sure your model is compatible with torchscript

PyTorch makes it really easy to deploy your Python models in C++ by using torchscript, an intermediate representation format for torch models that can be called in C++. Many of Python's built-in functions are supported by torchscript. However, not all Python operations are supported by the torchscript environment, meaning that you are only allowed to use a subset of Python operations in your model code. See the torch.jit docs to learn more about writing torchscript-compatible code.

If your model computes spectrograms (or requires any kind of preprocessing/postprocessing), make sure those operations are compatible with torchscript, like torchaudio's operation set.

Useful links:

Wrapping your model using torchaudio

Now, we create a wrapper class for our model. Because our model returns an audio waveform as output, we'll use WaveformToWaveform as our parent class. For both WaveformToWaveform and WaveformToLabels, we need to implement the do_forward_pass method with our processing code. See the docstrings for more details.

from torchaudacity import WaveformToWaveform

class MyVolumeModelWrapper(WaveformToWaveform):

    def __init__(self, model):
        model.eval()
        self.model = model
    
    def do_forward_pass(self, x: torch.Tensor) -> torch.Tensor:
        
        # do any preprocessing here! 
        # expect x to be a waveform tensor with shape (n_channels, n_samples)

        output = self.model(x)

        # do any postprocessing here!
        # the return value should be a multichannel waveform tensor with shape (n_channels, n_samples)
    
        return output

Creating a metadata document

Audacity models need a metadata file. See the metadata spec to learn about the required fields.

metadata = {
    'sample_rate': 48000, 
    'domain_tags': ['music', 'speech', 'environmental'],
    'short_description': 'Use me to boost volume by 3dB :).',
    'long_description':  'This description can be a max of 280 characters aaaaaaaaaaaaaaaaaaaa.',
    'tags': ['volume boost'],
    'labels': ['boosted'],
    'effect_type': 'waveform-to-waveform',
    'multichannel': False,
}

All set! We can now proceed to serialize the model to torchscript and save the model, along with its metadata.

from pathlib import Path
from torchaudacity import save_model

# create a root dir for our model
root = Path('booster-net')
root.mkdir(exist_ok=True, parents=True)

# get our model
model = MyVolumeModel()

# wrap it
wrapper = MyVolumeModelWrapper(model)

# serialize it
# an alternative is to use torch.jit.trace
serialized_model = torch.jit.script(serialized_model)

# save!
save_model(serialized_model, metadata, root)

Exporting to HuggingFace

You should now have a directory structure that looks like this:

/booster-net/
/booster-net/model.pt
/booster-net/metadata.json

This will be the repository for your audacity model. Make sure to add a readme with the audacity tag in the YAML metadata, so it show up on the explore tab of Audacity's Deep Learning Tools.

Create a README.md inside booster-net/, and add the following header:

in README.md

---
tags: audacity
---

Awesome! It's time to push to HuggingFace. See their documentation for adding a model to the HuggingFace model hub.

Example - Exporting a Pretrained Asteroid model

See this example notebook, where we serialize a pretrained ConvTasNet model for speech separation using the Asteroid source separation library.


Comments
  • Audacitorch install prevents import of torchaudio

    Audacitorch install prevents import of torchaudio

    I've trained a model that acts on MFCCs I get using torchaudio. When I installed audacitorch to wrap my model (in Colab), it prevents me from importing torchaudio with the message OSError: libtorch_cuda_cpp.so: cannot open shared object file: No such file or directory. It looks like installing audacitorch uninstalls and re-installs torch - might that have something to do with it?

    opened by jonesmo 3
  • Labeler example revised

    Labeler example revised

    Added a model more compatible with torchscript, removed unneeded sections of the notebook, and a small aside on where to get more information about the huggingface transformer module's compatibility with torchscript

    opened by aldo-aguilar 0
  • tweaks to labeler_example.ipynb

    tweaks to labeler_example.ipynb

    Hey Aldo,

    Good job getting the wavtogether. I just have a couple of small suggested edits. The first one is to add a section at the end that points them to how to upload a model to HuggingFace. The second boils down to adding a couple of hyperlinks to give information. I'll provide examples where it would be cool to add a link below.

    In "Audacity WaveformToLabels Example" In this notebook we will load in [a speech to text model](hyperlink to model)

    In "Wraping the model" torchaudacity provides a WaveformToLabels class . We will use this as a base class for our pretrained models wrapper. The WaveformToLabels class provides us with tests to ensure that our model is receiving properly sized input, and outputting the expected tensor shapes for Audacity's [Deep Learning Analyzer](hyperlink or explanation).

    In "Saving Our Model & Metadata' We will now save the wrapped model locally by tracing it with torchscript, and generating a ScriptModule or ScriptFunction using torch.jit.script. We can then use torchaudacity's utility function save_model to save the model and meta data easily.

    opened by bryan-pardo 0
  • Unit-tests are not flagging models with incompatible output structure

    Unit-tests are not flagging models with incompatible output structure

    The model aguilara42/audacity-Wav2Vec2-Base is causing the following assertion error:

    ~/Desktop/audacity/modules/mod-deep-learning/DeepLearningAnalyzer.cpp(193): assert "output.dim() == 1" failed in TensorToLabelTrack().
    

    This should be flagged during the serialization process. See also audacitorch/audacity#90.

    opened by cwitkowitz 0
  • Output structure for frame-level predictions

    Output structure for frame-level predictions

    The output structure of waveform-to-label models seems to be more targeted towards intervallic predictions, such as music tagging or instrument recognition. It would be nice to have a more straightforward way to output frame-level predictions, such as for frame-wise music transcription.

    opened by cwitkowitz 0
  • Increase flexibility for output of waveform-to-labels models

    Increase flexibility for output of waveform-to-labels models

    Waveform-to-label models have little flexibility when it comes to the output predictions. As an example, I am trying to export an automatic music transcription model which produces multiple labels for each time step. This is not possible with the current version of audacitorch, and there does not seem to be a straightforward workaround.

    opened by cwitkowitz 0
Owner
PhD @interactiveaudiolab
null
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 2, 2023
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.

Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does

abhishek thakur 1.1k Jan 4, 2023
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

null 878 Dec 30, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 3, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 6, 2023
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 6, 2023
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 7, 2023
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 4, 2023
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 6, 2023
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 3, 2023
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 5, 2023
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

Phil Wang 900 Dec 22, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 5, 2023