Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

Overview

IROS21 information

To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in Evaluations.md.

To test the different Waypoint Generators, follow the steps in waypoint_eval.md

DRL agents are located in the agents folder.

Arena-MARL

A flexible, high-performance 2D simulator with configurable agents, multiple sensors, and benchmark scenarios for testing robotic navigation in multi-agent settings.

Arena-MARL uses Flatland as the core simulator and is a modular high-level library for end-to-end experiments in embodied AI -- defining embodied AI tasks (e.g. navigation, obstacle avoidance, behavior cloning), training agents (via imitation or reinforcement learning, or no learning at all using conventional approaches like DWA, TEB or MPC), and benchmarking their performance on the defined tasks using standard metrics.

Before Training After Training

What is this repository for?

Train DRL agents on ROS compatible simulations for autonomous navigation in highly dynamic environments. Flatland-DRL integration is inspired by Ronja Gueldenring's work: drl_local_planner_ros_stable_baselines. Test state of the art local and global planners in ROS environments both in simulation and on real hardware. Following features are included:

  • Setup to train a local planner with reinforcement learning approaches from stable baselines3
  • Training in simulator Flatland in train mode
  • Include realistic behavior patterns and semantic states of obstacles (speaking, running, etc.)
  • Include different obstacles classes (other robots, vehicles, types of persons, etc.)
  • Implementation of intermediate planner classes to combine local DRL planner with global map-based planning of ROS Navigation stack
  • Testing a variety of planners (learning based and model based) within specific scenarios in test mode
  • Modular structure for extension of new functionalities and approaches

Start Guide

We recommend starting with the start guide which contains all information you need to know to start off with this project including installation on Linux and Windows as well as tutorials to start with.

  • For Mac, please refer to our Docker.

1. Installation

Please refer to Installation.md for detailed explanations about the installation process.

1.1. Docker

We provide a Docker file to run our code on other operating systems. Please refer to Docker.md for more information.

2. Usage

DRL Training

Please refer to DRL-Training.md for detailed explanations about agent, policy and training setups.

Scenario Creation with the arena-scenario-gui

To create complex, collaborative scenarios for training and/or evaluation purposes, please refer to the repo arena-scenario-gui. This application provides you with an user interface to easily create complex scenarios with multiple dynamic and static obstacles by drawing and other simple UI elements like dragging and dropping. This will save you a lot of time in creating complex scenarios for you individual use cases.

Used third party repos:

You might also like...
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

 Multi-agent reinforcement learning algorithm and environment
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI Gym toolkit.

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

PyTorch implementations of deep reinforcement learning algorithms and environments
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

A multi-entity Transformer for multi-agent spatiotemporal modeling.
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Comments
  • Add to PettingZoo third party env list

    Add to PettingZoo third party env list

    Hey, we keep a list of PettingZoo environments here https://github.com/Farama-Foundation/PettingZoo/blob/master/docs/third_party_envs.md that shows up on the documentation website here https://www.pettingzoo.ml/third_party_envs. Would you mind creating a PR to that file with an entry briefly explaining what your environment is? I'd do it myself like normal, but I don't entirely understand what your environment is.

    opened by jkterry1 0
Owner
Robotics, Autonomous Navigation and Computer Vision Research
null
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 3, 2023
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

null 87 Jan 7, 2023
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

null 405 Jan 6, 2023
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 8, 2023
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

null 183 Dec 28, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 6, 2023
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 6, 2023