Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Overview

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Teaser

[Project website] [Dataset] [Video]

Abstract

We propose a new generative model for 3D garment deformations that enables us to learn, for the first time, a data-driven method for virtual try-on that effectively addresses garment-body collisions. In contrast to existing methods that require an undesirable postprocessing step to fix garment-body interpenetrations at test time, our approach directly outputs 3D garment configurations that do not collide with the underlying body. Key to our success is a new canonical space for garments that removes pose-and-shape deformations already captured by a new diffused human body model, which extrapolates body surface properties such as skinning weights and blendshapes to any 3D point. We leverage this representation to train a generative model with a novel self-supervised collision term that learns to reliably solve garment-body interpenetrations. We extensively evaluate and compare our results with recently proposed data-driven methods, and show that our method is the first to successfully address garment-body contact in unseen body shapes and motions, without compromising realism and detail.

Running the model

Requirements: python3.8, tensorflow-2.2.1, numpy-1.18.5, scipy-1.7.1, chumpy-0.70

Project structure:

vto-garment-collisions
│
└───assets 
|    └─ images    
|    └─ meshes    
|    └─ CMU       # Not included, see instructions
|    └─ SMPL      # Not included, see instructions
| 
└───rendering     # Code to render meshes 
|
└───src           # Code to run the model
| 
└───trained_models      
|    └─ diffused_body  # Networks of the diffused body model (Not included, see instructions)
|    └─ tshirt         # Networks of tshirt model (Not included, see instructions)
│
└───run_model.py

Download trained models

  1. Download models of the diffused human body: https://github.com/isantesteban/vto-garment-collisions/releases/download/trained-models/trained_models_diffused_body.zip
  2. Download models of the garment: https://github.com/isantesteban/vto-garment-collisions/releases/download/tshirt-trained-models/trained_models_tshirt.zip
  3. Create trained_models directory and extract trained_models_diffused_body.zip and trained_models_tshirt.zip there.

Download human model

  1. Sign in into https://smpl.is.tue.mpg.de
  2. Download SMPL version 1.0.0 for Python 2.7 (10 shape PCs)
  3. Extract SMPL_python_v.1.0.0.zip and copy smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl in assets/SMPL

Download animation sequences

  1. Sign in into https://amass.is.tue.mpg.de
  2. Download the body data for the CMU motions (SMPL+H model)
  3. Extract CMU.tar.bz2 in assets/CMU:
tar -C assets/ -xf ~/Downloads/CMU.tar.bz2 CMU/ 

Generate garment animation

To generate the deformed garment meshes for a given sequence:

python run_model.py assets/CMU/07/07_02_poses.npz --export_dir results/07_02

Rendering

Requirements: blender-2.93, ffmpeg

To render the meshes:

blender --background rendering/scene.blend --python rendering/render.py --path results/07_02

Render

Citation

If you find this repository useful please cite our work:

@article {santesteban2021garmentcollisions,
    journal = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    title = {{Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On}},
    author = {Santesteban, Igor and Thuerey, Nils and Otaduy, Miguel A and Casas, Dan},
    year = {2021}
}
You might also like...
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

[CVPR 2021]
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

 Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Owner
null
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

null 109 Dec 29, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) ?? [Paper] ?? [Webpage] ?? [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

null 27 Dec 1, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 1, 2023
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

null 40 Dec 13, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022