High-Dimensional Portfolio Selecton with Cardinality Constraints
This repo contains code for perform proximal gradient descent to solve sample average approximation of expected utility maximization problems with cardinality constraints. We show that, under mild conditions, the $l_1$-regularized problem is equivalent to the $l_0$-constrained problem.
Requirements
We use Python 3 for our code. Please refer to requirements.txt
, and use pip
or conda
to create a virtual environment with required packages installed.